
Introduction to Quantum Computing BU August 11, 2021

This sheet contains exercises about

• Hadamard transform

• Grover

• Deutsch

• Deutsch-Jozsa

• Shor

1. Excercise 1 (1 points)
Using the matrix representation of the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
write down the matrix H ⊗H and find (H ⊗H)(|0〉 ⊗ |1〉). Show that this is equivalent to

|φ〉 =

(
|0〉+ |1〉√

2

)(
|0〉 − |1〉√

2

)
2. Exercise (1 points)

The Beam splitter gate has a matrix representation given by

B =
1√
2

(
i 1
1 i

)
Show that B generates superposition states out of the computational basis states |0〉 and |1〉.
In particular, show that

B ⊗B|0〉|0〉 =

(
i|0〉+ |1〉√

2

)(
i|0〉+ |1〉√

2

)
Show that two applications of the beam splitter gate on the same state, namely that B(B|ψ〉)
act analogously to the NOT gate, giving the same probabilities of finding |0〉 and |1〉.

3. Exercise (1 points)
Deutsch-Jozsa’s algorithm

Consider a function with two inputs such that f(x) = 1. Explicitly show that the Deutsch-
Jozsa algorithm works in this case by generating the vector |y〉 = |00〉 as the final output.
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4. Exercise (1 points)
Quantum gates are universal in the sense that quantum gates can be designed that do

anything a classical gate can do. Design a quantum adder, a gate that takes three inputs
|x〉, |y〉, |z〉 and that has three output qubits |x〉, |x ⊕ y〉, |xy〉, where |x ⊕ y〉, is the sum and
|xy〉 is the carry.

5. Exercise (1 points)
Shor’s algorithm

Consider the eigenvectors

|ut〉 =
1√
r

r−1∑
k=0

exp

(
−2πikt

r

) ∣∣∣xk mod N
〉

and show that

Ux |ut〉 = exp

(
−2πit

r

)
|ut〉

where

Ux|y〉 =

{
|xy mod N〉 0 ≤ y ≤ N − 1

|y〉 N ≤ y ≤ 2L − 1

6. Exercise (1 points)
Shor’s algorithm.

Show that the probability that the period of f(r) = xr mod N is odd is at most 1/2.

7. Exercise (1 points)
Grover’s algorithm

Show that the unitary operator corresponding to the phase shift in the Grover iteration is
2 |0〉 〈0| − I.

8. Exercise (1 points)
Hadamard

Demonstrate the Hadamard operator on one qubit may be written as

H =
1√
2

[(|0〉+ |1〉)〈0|+ (|0〉 − |1〉)〈1|].

9. Exercise (1 points)
Hadamard
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Write out an explicit matrix representation for H⊗3.

10. Exercise (1 points)
QFT and H

Prove if

QFT|0〉⊗n = H⊗n|0〉⊗n

is true.

1 Deutsh-Jozsa algorithm

The Deutsch-Jozsa algorithm is a generalization of Deutsch’s algorithm. Again, this algorithm
allows us to determine whether a function f(x) is constant or balanced1, but this time the function
has multiple input values. If f(x) is constant, then the output is the same for all input values x. If
the function is balanced, then f(x) = 0 for half of the inputs and f(x) = 1 for the other half of the
inputs, and vice versa. We start with an initial state that includes n qubits in the state |0〉 and a
singlequbit in the state |1〉. Hadamard gates are applied to all qubits. The circuit is illustrated in
Figure 1.

Figure 1: The Deutsch-Jozsa algorithm generizes Deutsch’s algorithm to handle a function with n
input values and determine whether or not it is constant or balanced.

We start off by calculating ∣∣ψ′〉 =
(
H⊗n

) (
|0〉⊗n

)
⊗ (H|1〉).

From

H⊗n
(
|0〉⊗n

)
=

1√
2n

∑
x∈{0,1}n

|x〉

1The identity and bit flip functions are called balanced because the outputs are opposite for half the inputs. So
a function on a single bit can be constant or balanced. Whether a function on a single bit is constant or balanced is
a global property. What we’re going to see in the following development is that Deutsch’s algorithm will let us put
together a state that has all of the output values of the function associated with each input value in a superposition
state. Then we will use quantum interference to find out if the given function is constant or balanced.
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we see that this is ∣∣ψ′〉 =
1√
2n

∑
x∈{0,1}n

|x〉
(
|0〉 − |1〉√

2

)
Next we apply Uf |x, y〉 = |x, y ⊕ f(x)〉 , to evaluate the function. The first n qubits are the values
of x and the last qubit plays the role of y as shown in the figure. The output state of the Uf gate
is ∣∣ψ′′〉 =

1√
2n

∑
x

(−1)f(x)|x〉
(
|0〉 − |1〉√

2

)
.

Applying a Hadamard gate to an n qubit state |x〉 gives

H⊗n|x〉 =
1√
2n

∑
y

(−1)x·y|y〉

So the final output state is

|ψout 〉 =
1

2n

∑
y

∑
x

(−1)x·y+f(x)|y〉
(
|0〉 − |1〉√

2

)
Now we measure the n inputs. It might not be immediately obvious looking at |ψout 〉, but there
are two possible measurement results on |y〉 (which is the state of n inputs at this stage) that are
of interest. The possible results are as follows: Measurement of the first n input qubits in |ψout 〉
returns all 0’s. In this case f(x) is constant. Otherwise, if at least one of the qubits in |y〉 is found
to be a 1 on measurement, f(x) is balanced.

2 Shor’s algorithm

Shor’s algorithm was fundamental in demonstrating the power and importance of quantum com-
putation. This is an algorithm that can be used to factor prime numbers - meaning that it can be
used to break encryption codes if a practical quantum computer is ever built. Needless to say, this
algorithm got the attention of a lot of people.

The first thing we need to know in order to do Shor’s algorithm is order finding . Let x and
N be positive integers with no common factors such that x < N . The order of x is the smallest
positive integer r such that

xr = 1 mod N

(9.50)

Example 1 what modN means? First of all, x and N can’t have any common factors because
their greatest common divisor is 1 .

Suppose that we let x = 5 and N = 44. To find xr = a mod N , we compute xr and subtract N
until we get the last integer greater than 0. The first two cases are less than N = 44, so we don’t do
anything: 51 = 5 and 52 = 25. Now since 53 = 125, we note that (44)(2) = 88 and 125− 88 = 37.
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Hence 53 = 37(mod44). Next 54 = 625. We have (14)(44) = 616, and so 54 = 9(mod44). Finally
55 = 3125. It turns out that 71× 44 = 3124, which is 1 less than 55 = 3125. This is where we stop.
Hence

55 = 1(mod44)

The order of 5 is 5 in this case. As you can see, plugging away like this, finding the powers
xr = 1(modN) can be very time-consuming. With large numbers it will swamp the best computers
available, the time required is exponential in logN . This problem can be solved far more efficiently
by using a quantum algorithm based on phase estimation.
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