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Chapter 1

Models, Turing machine
and universality

Next pages contain information about models, Turing machine and universality
[1].
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1

INTRODUCTION
AND BACKGROUND

1.1 Overview

A computer is a physical device that helps us process information by executing
algorithms. An algorithm is a well-defined procedure, with finite description,
for realizing an information-processing task. An information-processing task can
always be translated into a physical task.

When designing complex algorithms and protocols for various information-
processing tasks, it is very helpful, perhaps essential, to work with some idealized
computing model. However, when studying the true limitations of a computing
device, especially for some practical reason, it is important not to forget the rela-
tionship between computing and physics. Real computing devices are embodied
in a larger and often richer physical reality than is represented by the idealized
computing model.

Quantum information processing is the result of using the physical reality that
quantum theory tells us about for the purposes of performing tasks that were
previously thought impossible or infeasible. Devices that perform quantum in-
formation processing are known as quantum computers. In this book we examine
how quantum computers can be used to solve certain problems more efficiently
than can be done with classical computers, and also how this can be done reliably
even when there is a possibility for errors to occur.

In this first chapter we present some fundamental notions of computation theory
and quantum physics that will form the basis for much of what follows. After
this brief introduction, we will review the necessary tools from linear algebra in
Chapter 2, and detail the framework of quantum mechanics, as relevant to our
model of quantum computation, in Chapter 3. In the remainder of the book we
examine quantum teleportation, quantum algorithms and quantum error correc-
tion in detail.
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2 INTRODUCTION AND BACKGROUND

1.2 Computers and the Strong Church–Turing Thesis

We are often interested in the amount of resources used by a computer to solve a
problem, and we refer to this as the complexity of the computation. An important
resource for a computer is time. Another resource is space, which refers to the
amount of memory used by the computer in performing the computation. We
measure the amount of a resource used in a computation for solving a given
problem as a function of the length of the input of an instance of that problem.
For example, if the problem is to multiply two n bit numbers, a computer might
solve this problem using up to 2n2+3 units of time (where the unit of time may be
seconds, or the length of time required for the computer to perform a basic step).

Of course, the exact amount of resources used by a computer executing an algo-
rithm depends on the physical architecture of the computer. A different computer
multiplying the same numbers mentioned above might use up to time 4n3 +n+5
to execute the same basic algorithm. This fact seems to present a problem if we
are interested in studying the complexity of algorithms themselves, abstracted
from the details of the machines that might be used to execute them. To avoid
this problem we use a more coarse measure of complexity. One coarser measure
is to consider only the highest-order terms in the expressions quantifying re-
source requirements, and to ignore constant multiplicative factors. For example,
consider the two computers mentioned above that run a searching algorithm in
times 2n2 + 3 and 4n3 + n + 7, respectively. The highest-order terms are n2 and
n3, respectively (suppressing the constant multiplicative factors 2 and 4, respec-
tively). We say that the running time of that algorithm for those computers is
in O(n2) and O(n3), respectively.

We should note that O (f(n)) denotes an upper bound on the running time of the
algorithm. For example, if a running time complexity is in O(n2) or in O(log n),
then it is also in O(n3). In this way, expressing the resource requirements using
the O notation gives a hierarchy of complexities. If we wish to describe lower
bounds, then we use the Ω notation.

It often is very convenient to go a step further and use an even more coarse de-
scription of resources used. As we describe in Section 9.1, in theoretical computer
science, an algorithm is considered to be efficient with respect to some resource if
the amount of that resource used in the algorithm is in O(nk) for some k. In this
case we say that the algorithm is polynomial with respect to the resource. If an
algorithm’s running time is in O(n), we say that it is linear, and if the running
time is in O(log n) we say that it is logarithmic. Since linear and logarithmic
functions do not grow faster than polynomial functions, these algorithms are
also efficient. Algorithms that use Ω(cn) resources, for some constant c, are said
to be exponential, and are considered not to be efficient. If the running time of
an algorithm cannot be bounded above by any polynomial, we say its running
time is superpolynomial. The term ‘exponential’ is often used loosely to mean
superpolynomial.
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COMPUTERS AND THE STRONG CHURCH–TURING THESIS 3

One advantage of this coarse measure of complexity, which we will elaborate
on, is that it appears to be robust against reasonable changes to the computing
model and how resources are counted. For example, one cost that is often ignored
when measuring the complexity of a computing model is the time it takes to
move information around. For example, if the physical bits are arranged along
a line, then to bring together two bits that are n-units apart will take time
proportional to n (due to special relativity, if nothing else). Ignoring this cost
is in general justifiable, since in modern computers, for an n of practical size,
this transportation time is negligible. Furthermore, properly accounting for this
time only changes the complexity by a linear factor (and thus does not affect the
polynomial versus superpolynomial dichotomy).

Computers are used so extensively to solve such a wide variety of problems, that
questions of their power and efficiency are of enormous practical importance,
aside from being of theoretical interest. At first glance, the goal of characterizing
the problems that can be solved on a computer, and to quantify the efficiency
with which problems can be solved, seems a daunting one. The range of sizes
and architectures of modern computers encompasses devices as simple as a single
programmable logic chip in a household appliance, and as complex as the enor-
mously powerful supercomputers used by NASA. So it appears that we would be
faced with addressing the questions of computability and efficiency for computers
in each of a vast number of categories.

The development of the mathematical theories of computability and compu-
tational complexity theory has shown us, however, that the situation is much
better. The Church–Turing Thesis says that a computing problem can be solved
on any computer that we could hope to build, if and only if it can be solved on a
very simple ‘machine’, named a Turing machine (after the mathematician Alan
Turing who conceived it). It should be emphasized that the Turing ‘machine’
is a mathematical abstraction (and not a physical device). A Turing machine is
a computing model consisting of a finite set of states, an infinite ‘tape’ which
symbols from a finite alphabet can be written to and read from using a mov-
ing head, and a transition function that specifies the next state in terms of the
current state and symbol currently pointed to by the head.

If we believe the Church–Turing Thesis, then a function is computable by a
Turing machine if and only if it is computable by some realistic computing device.
In fact, the technical term computable corresponds to what can be computed by
a Turing machine.

To understand the intuition behind the Church–Turing Thesis, consider some
other computing device, A, which has some finite description, accepts input
strings x, and has access to an arbitrary amount of workspace. We can write
a computer program for our universal Turing machine that will simulate the
evolution of A on input x. One could either simulate the logical evolution of A
(much like one computer operating system can simulate another), or even more
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4 INTRODUCTION AND BACKGROUND

naively, given the complete physical description of the finite system A, and the
laws of physics governing it, our universal Turing machine could alternatively
simulate it at a physical level.

The original Church–Turing Thesis says nothing about the efficiency of com-
putation. When one computer simulates another, there is usually some sort of
‘overhead’ cost associated with the simulation. For example, consider two types
of computer, A and B. Suppose we want to write a program for A so that it
simulates the behaviour of B. Suppose that in order to simulate a single step of
the evolution of B, computer A requires 5 steps. Then a problem that is solved
by B in time O(n3) is solved by A in time in 5 ·O(n3) = O(n3). This simulation
is efficient. Simulations of one computer by another can also involve a trade-off
between resources of different kinds, such as time and space. As an example, con-
sider computer A simulating another computer C. Suppose that when computer
C uses S units of space and T units of space, the simulation requires that A use
up to O(ST2S) units of time. If C can solve a problem in time O(n2) using O(n)
space, then A uses up to O(n32n) time to simulate C.

We say that a simulation of one computer by another is efficient if the ‘overhead’
in resources used by the simulation is polynomial (i.e. simulating an O(f(n))
algorithm uses O(f(n)k) resources for some fixed integer k). So in our above
example, A can simulate B efficiently but not necessarily C (the running times
listed are only upper bounds, so we do not know for sure if the exponential
overhead is necessary).

One alternative computing model that is more closely related to how one typi-
cally describes algorithms and writes computer programs is the random access
machine (RAM) model. A RAM machine can perform elementary computational
operations including writing inputs into its memory (whose units are assumed to
store integers), elementary arithmetic operations on values stored in its memory,
and an operation conditioned on some value in memory. The classical algorithms
we describe and analyse in this textbook implicitly are described in log-RAM
model, where operations involving n-bit numbers take time n.

In order to extend the Church–Turing Thesis to say something useful about the
efficiency of computation, it is useful to generalize the definition of a Turing
machine slightly. A probabilistic Turing machine is one capable of making a ran-
dom binary choice at each step, where the state transition rules are expanded to
account for these random bits. We can say that a probabilistic Turing machine is
a Turing machine with a built-in ‘coin-flipper’. There are some important prob-
lems that we know how to solve efficiently using a probabilistic Turing machine,
but do not know how to solve efficiently using a conventional Turing machine
(without a coin-flipper). An example of such a problem is that of finding square
roots modulo a prime.

It may seem strange that the addition of a source of randomness (the coin-flipper)
could add power to a Turing machine. In fact, some results in computational
complexity theory give reason to suspect that every problem (including the
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COMPUTERS AND THE STRONG CHURCH–TURING THESIS 5

“square root modulo a prime” problem above) for which probabilistic Turing
machine can efficiently guess the correct answer with high probability, can
be solved efficiently by a deterministic Turing machine. However, since we do
not have proof of this equivalence between Turing machines and probabilis-
tic Turing machines, and problems such as the square root modulo a prime
problem above are evidence that a coin-flipper may offer additional power, we
will state the following thesis in terms of probabilistic Turing machines. This
thesis will be very important in motivating the importance of quantum com-
puting.

(Classical) Strong Church–Turing Thesis: A probabilistic Turing machine can
efficiently simulate any realistic model of computation.

Accepting the Strong Church–Turing Thesis allows us to discuss the notion of the
intrinsic complexity of a problem, independent of the details of the computing
model.

The Strong Church–Turing Thesis has survived so many attempts to violate it
that before the advent of quantum computing the thesis had come to be widely
accepted. To understand its importance, consider again the problem of deter-
mining the computational resources required to solve computational problems.
In light of the strong Church–Turing Thesis, the problem is vastly simplified.
It will suffice to restrict our investigations to the capabilities of a probabilistic
Turing machine (or any equivalent model of computation, such as a modern per-
sonal computer with access to an arbitrarily large amount of memory), since any
realistic computing model will be roughly equivalent in power to it. You might
wonder why the word ‘realistic’ appears in the statement of the strong Church–
Turing Thesis. It is possible to describe special-purpose (classical) machines for
solving certain problems in such a way that a probabilistic Turing machine sim-
ulation may require an exponential overhead in time or space. At first glance,
such proposals seem to challenge the strong Church–Turing Thesis. However,
these machines invariably ‘cheat’ by not accounting for all the resources they
use. While it seems that the special-purpose machine uses exponentially less
time and space than a probabilistic Turing machine solving the problem, the
special-purpose machine needs to perform some physical task that implicitly re-
quires superpolynomial resources. The term realistic model of computation in
the statement of the strong Church–Turing Thesis refers to a model of compu-
tation which is consistent with the laws of physics and in which we explicitly
account for all the physical resources used by that model.

It is important to note that in order to actually implement a Turing machine
or something equivalent it, one must find a way to deal with realistic errors.
Error-correcting codes were developed early in the history of computation in
order to deal with the faults inherent with any practical implementation of a
computer. However, the error-correcting procedures are also not perfect, and
could introduce additional errors themselves. Thus, the error correction needs to
be done in a fault-tolerant way. Fortunately for classical computation, efficient
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6 INTRODUCTION AND BACKGROUND

fault-tolerant error-correcting techniques have been found to deal with realistic
error models.

The fundamental problem with the classical strong Church–Turing Thesis is that
it appears that classical physics is not powerful enough to efficiently simulate
quantum physics. The basic principle is still believed to be true; however, we need
a computing model capable of simulating arbitrary ‘realistic’ physical devices,
including quantum devices. The answer may be a quantum version of the strong
Church–Turing Thesis, where we replace the probabilistic Turing machine with
some reasonable type of quantum computing model. We describe a quantum
model of computing in Chapter 4 that is equivalent in power to what is known
as a quantum Turing machine.

Quantum Strong Church–Turing Thesis: A quantum Turing machine can effi-
ciently simulate any realistic model of computation.

1.3 The Circuit Model of Computation

In Section 1.2, we discussed a prototypical computer (or model of computation)
known as the probabilistic Turing machine. Another useful model of computa-
tion is that of a uniform families of reversible circuits. (We will see in Section 1.5
why we can restrict attention to reversible gates and circuits.) Circuits are net-
works composed of wires that carry bit values to gates that perform elementary
operations on the bits. The circuits we consider will all be acyclic, meaning that
the bits move through the circuit in a linear fashion, and the wires never feed
back to a prior location in the circuit. A circuit Cn has n wires, and can be
described by a circuit diagram similar to that shown in Figure 1.1 for n = 4.
The input bits are written onto the wires entering the circuit from the left side
of the diagram. At every time step t each wire can enter at most one gate G.
The output bits are read-off the wires leaving the circuit at the right side of the
diagram.

A circuit is an array or network of gates, which is the terminology often used
in the quantum setting. The gates come from some finite family, and they take

Fig. 1.1 A circuit diagram. The horizontal lines represent ‘wires’ carrying the bits,

and the blocks represent gates. Bits propagate through the circuit from left to right.

The input bits i1, i2, i3, i4 are written on the wires at the far left edge of the circuit,

and the output bits o1, o2, o3, o4 are read-off the far right edge of the circuit.
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Chapter 2

Universality

Next pages contain information about universality [2].
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188 Quantum circuits

in the computational basis. However, often we want to perform a measurement

in some other basis, defined by a complete set of orthonormal states. To perform

this measurement, simply unitarily transform from the basis we wish to perform

the measurement in to the computational basis, then measure. For example,

show that the circuit
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performs a measurement in the basis of the Bell states. More precisely, show that

this circuit results in a measurement being performed with corresponding

POVM elements the four projectors onto the Bell states. What are the

corresponding measurement operators?

Exercise 4.34: (Measuring an operator) Suppose we have a single qubit operator

U with eigenvalues ±1, so that U is both Hermitian and unitary, so it can be

regarded both as an observable and a quantum gate. Suppose we wish to measure

the observable U . That is, we desire to obtain a measurement result indicating
one of the two eigenvalues, and leaving a post-measurement state which is the

corresponding eigenvector. How can this be implemented by a quantum circuit?

Show that the following circuit implements a measurement of U :

| 〉 H • H
�������� ��������

�������

� � � � � � � �

��
��
��
�

|ψin〉 U |ψout〉

Exercise 4.35: (Measurement commutes with controls) A consequence of the

principle of deferred measurement is that measurements commute with quantum

gates when the qubit being measured is a control qubit, that is:

•
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U
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U

(Recall that the double lines represent classical bits in this diagram.) Prove the

first equality. The rightmost circuit is simply a convenient notation to depict the

use of a measurement result to classically control a quantum gate.

4.5 Universal quantum gates

A small set of gates (e.g. , , ) can be used to compute an arbitrary classical

function, as we saw in Section 3.1.2. We say that such a set of gates is universal for clas-
sical computation. In fact, since the Toffoli gate is universal for classical computation,

quantum circuits subsume classical circuits. A similar universality result is true for quan-

tum computation, where a set of gates is said to be universal for quantum computation
if any unitary operation may be approximated to arbitrary accuracy by a quantum circuit
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Universal quantum gates 189

involving only those gates. We now describe three universality constructions for quantum

computation. These constructions build upon each other, and culminate in a proof that

any unitary operation can be approximated to arbitrary accuracy using Hadamard, phase,

, and π/8 gates. You may wonder why the phase gate appears in this list, since it
can be constructed from two π/8 gates; it is included because of its natural role in the
fault-tolerant constructions described in Chapter 10.

The first construction shows that an arbitrary unitary operator may be expressed ex-
actly as a product of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states. The second construction combines the first

construction with the results of the previous section to show that an arbitrary unitary

operator may be expressed exactly using single qubit and gates. The third con-

struction combines the second construction with a proof that single qubit operation may

be approximated to arbitrary accuracy using the Hadamard, phase, and π/8 gates. This in
turn implies that any unitary operation can be approximated to arbitrary accuracy using

Hadamard, phase, , and π/8 gates.

Our constructions say little about efficiency – how many (polynomially or exponen-

tially many) gates must be composed in order to create a given unitary transform. In

Section 4.5.4 we show that there exist unitary transforms which require exponentially
many gates to approximate. Of course, the goal of quantum computation is to find inter-

esting families of unitary transformations that can be performed efficiently.

Exercise 4.36: Construct a quantum circuit to add two two-bit numbers x and y
modulo 4. That is, the circuit should perform the transformation

|x, y〉 → |x, x + y mod 4〉.

4.5.1 Two-level unitary gates are universal
Consider a unitary matrix U which acts on a d-dimensional Hilbert space. In this section
we explain how U may be decomposed into a product of two-level unitary matrices;
that is, unitary matrices which act non-trivially only on two-or-fewer vector components.

The essential idea behind this decomposition may be understood by considering the case

when U is 3×3, so suppose that U has the form

U =

⎡
⎣

a d g
b e h
c f j

⎤
⎦ . (4.41)

We will find two-level unitary matrices U1, . . . , U3 such that

U3U2U1U = I . (4.42)

It follows that

U = U †
1U

†
2U

†
3 . (4.43)

U1, U2 and U3 are all two-level unitary matrices, and it is easy to see that their inverses,
U †
1 , U

†
2 and U †

3 are also two-level unitary matrices. Thus, if we can demonstrate (4.42),

then we will have shown how to break U up into a product of two-level unitary matrices.
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Use the following procedure to construct U1: if b = 0 then set

U1 ≡
⎡
⎣
1 0 0

0 1 0

0 0 1

⎤
⎦ . (4.44)

If b 	= 0 then set

U1 ≡

⎡
⎢⎢⎣

a∗√
|a|2+|b|2

b∗√
|a|2+|b|2

0

b√
|a|2+|b|2

−a√
|a|2+|b|2

0

0 0 1

⎤
⎥⎥⎦ . (4.45)

Note that in either case U1 is a two-level unitary matrix, and when we multiply the
matrices out we get

U1U =

⎡
⎢⎣

a
′

d
′

g
′

0 e
′

h
′

c
′

f
′

j
′

⎤
⎥⎦ . (4.46)

The key point to note is that the middle entry in the left hand column is zero. We denote

the other entries in the matrix with a generic prime ′; their actual values do not matter.
Now apply a similar procedure to find a two-level matrix U2 such that U2U1U has no

entry in the bottom left corner. That is, if c
′
= 0 we set

U2 ≡

⎡
⎢⎣

a
′∗

0 0

0 1 0

0 0 1

⎤
⎥⎦ , (4.47)

while if c
′ 	= 0 then we set

U2 ≡

⎡
⎢⎢⎢⎣

a
′ ∗√

|a′ |2+|c′ |2
0 c

′ ∗√
|a′ |2+|c′ |2

0 1 0

c
′√

|a′ |2+|c′ |2
0 −a

′√
|a′ |2+|c′ |2

⎤
⎥⎥⎥⎦ . (4.48)

In either case, when we carry out the matrix multiplication we find that

U2U1U =

⎡
⎢⎣
1 d

′′
g

′′

0 e
′′

h
′′

0 f
′′

j
′′

⎤
⎥⎦ . (4.49)

Since U, U1 and U2 are unitary, it follows that U2U1U is unitary, and thus d
′′
= g

′′
= 0,

since the first row of U2U1U must have norm 1. Finally, set

U3 ≡

⎡
⎢⎣
1 0 0

0 e
′′∗

f
′′∗

0 h
′′∗

j
′′∗

⎤
⎥⎦ . (4.50)

It is now easy to verify that U3U2U1U = I, and thus U = U †
1U

†
2U

†
3 , which is a decom-

position of U into two-level unitaries.

More generally, suppose U acts on a d-dimensional space. Then, in a similar fashion
to the 3×3 case, we can find two-level unitary matrices U1, . . . , Ud−1 such that the matrix
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Ud−1Ud−2 . . . U1U has a one in the top left hand corner, and all zeroes elsewhere in the

first row and column. We then repeat this procedure for the d − 1 by d − 1 unitary
submatrix in the lower right hand corner of Ud−1Ud−2 . . . U1U , and so on, with the end
result that an arbitrary d×d unitary matrix may be written

U = V1 . . . Vk, (4.51)

where the matrices Vi are two-level unitary matrices, and k ≤ (d−1)+(d−2)+ · · ·+1 =
d(d − 1)/2.

Exercise 4.37: Provide a decomposition of the transform

1

2

⎡
⎢⎢⎣

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦ (4.52)

into a product of two-level unitaries. This is a special case of the quantum

Fourier transform, which we study in more detail in the next chapter.

A corollary of the above result is that an arbitrary unitary matrix on an n qubit system
may be written as a product of at most 2n−1(2n − 1) two-level unitary matrices. For
specific unitary matrices, it may be possible to find much more efficient decompositions,

but as you will now show there exist matrices which cannot be decomposed as a product
of fewer than d− 1 two-level unitary matrices!

Exercise 4.38: Prove that there exists a d×d unitary matrix U which cannot be

decomposed as a product of fewer than d− 1 two-level unitary matrices.

4.5.2 Single qubit and gates are universal
We have just shown that an arbitrary unitary matrix on a d-dimensional Hilbert space
may be written as a product of two-level unitary matrices. Now we show that single

qubit and gates together can be used to implement an arbitrary two-level unitary

operation on the state space of n qubits. Combining these results we see that single qubit
and gates can be used to implement an arbitrary unitary operation on n qubits,
and therefore are universal for quantum computation.

Suppose U is a two-level unitary matrix on an n qubit quantum computer. Suppose

in particular that U acts non-trivially on the space spanned by the computational basis

states |s〉 and |t〉, where s = s1 . . . sn and t = t1 . . . tn are the binary expansions for s
and t. Let Ũ be the non-trivial 2×2 unitary submatrix of U ; Ũ can be thought of as a

unitary operator on a single qubit.

Our immediate goal is to construct a circuit implementing U , built from single qubit
and gates. To do this, we need to make use of Gray codes. Suppose we have
distinct binary numbers, s and t. A Gray code connecting s and t is a sequence of binary
numbers, starting with s and concluding with t, such that adjacent members of the list
differ in exactly one bit. For instance, with s = 101001 and t = 110011 we have the Gray
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code

1 0 1 0 0 1

1 0 1 0 1 1

1 0 0 0 1 1

1 1 0 0 1 1

(4.53)

Let g1 through gm be the elements of a Gray code connecting s and t, with g1 = s and
gm = t. Note that we can always find a Gray code such that m ≤ n+1 since s and t can
differ in at most n locations.
The basic idea of the quantum circuit implementing U is to perform a sequence of gates

effecting the state changes |g1〉 → |g2〉 → . . .→ |gm−1〉, then to perform a controlled-Ũ
operation, with the target qubit located at the single bit where gm−1 and gm differ, and

then to undo the first stage, transforming |gm−1〉 → |gm−2〉 → . . .→ |g1〉. Each of these
steps can be easily implemented using operations developed earlier in this chapter, and

the final result is an implementation of U .
A more precise description of the implementation is as follows. The first step is to swap

the states |g1〉 and |g2〉. Suppose g1 and g2 differ at the ith digit. Then we accomplish
the swap by performing a controlled bit flip on the ith qubit, conditional on the values
of the other qubits being identical to those in both g1 and g2. Next we use a controlled
operation to swap |g2〉 and |g3〉. We continue in this fashion until we swap |gm−2〉 with
|gm−1〉. The effect of this sequence of m− 2 operations is to achieve the operation

|g1〉 → |gm−1〉 (4.54)

|g2〉 → |g1〉 (4.55)

|g3〉 → |g2〉 (4.56)

. . . . . . . . .

|gm−1〉 → |gm−2〉. (4.57)

All other computational basis states are left unchanged by this sequence of operations.

Next, suppose gm−1 and gm differ in the jth bit. We apply a controlled-Ũ operation

with the jth qubit as target, conditional on the other qubits having the same values as
appear in both gm and gm−1. Finally, we complete the U operation by undoing the swap

operations: we swap |gm−1〉 with |gm−2〉, then |gm−2〉 with |gm−3〉 and so on, until we
swap |g2〉 with |g1〉.
A simple example illuminates the procedure further. Suppose we wish to implement

the two-level unitary transformation

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

b 0 0 0 0 0 0 d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.58)

Here, a, b, c and d are any complex numbers such that Ũ ≡
[

a c
b d

]
is a unitary matrix.
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Notice that U acts non-trivially only on the states |000〉 and |111〉. We write a Gray code
connecting 000 and 111:

A B C
0 0 0

0 0 1

0 1 1

1 1 1

. (4.59)

From this we read off the required circuit, shown in Figure 4.16. The first two gates

shuffle the states so that |000〉 gets swapped with |011〉. Next, the operation Ũ is applied

to the first qubit of the states |011〉 and |111〉, conditional on the second and third qubits
being in the state |11〉. Finally, we unshuffle the states, ensuring that |011〉 gets swapped
back with the state |000〉.

� � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � �
� � � �� � � � � � � �� � � �

Figure 4.16. Circuit implementing the two-level unitary operation defined by (4.58).

Returning to the general case, we see that implementing the two-level unitary operation

U requires at most 2(n−1) controlled operations to swap |g1〉 with |gm−1〉 and then back
again. Each of these controlled operations can be realized using O(n) single qubit and

gates; the controlled-Ũ operation also requires O(n) gates. Thus, implementing
U requires O(n2) single qubit and gates. We saw in the previous section that an

arbitrary unitary matrix on the 2n-dimensional state space of n qubits may be written as
a product of O(22n) = O(4n) two-level unitary operations. Combining these results, we

see that an arbitrary unitary operation on n qubits can be implemented using a circuit
containing O(n24n) single qubit and gates. Obviously, this construction does not

provide terribly efficient quantum circuits! However, we show in Section 4.5.4 that the

construction is close to optimal in the sense that there are unitary operations that require

an exponential number of gates to implement. Thus, to find fast quantum algorithms we

will clearly need a different approach than is taken in the universality construction.

Exercise 4.39: Find a quantum circuit using single qubit operations and s to

implement the transformation
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 a 0 0 0 0 c
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 b 0 0 0 0 d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.60)
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where Ũ =

[
a c
b d

]
is an arbitrary 2×2 unitary matrix.

4.5.3 A discrete set of universal operations
In the previous section we proved that the and single qubit unitaries together form

a universal set for quantum computation. Unfortunately, no straightforward method is

known to implement all these gates in a fashion which is resistant to errors. Fortunately,

in this section we’ll find a discrete set of gates which can be used to perform universal

quantum computation, and in Chaper 10 we’ll show how to perform these gates in an

error-resistant fashion, using quantum error-correcting codes.

Approximating unitary operators
Obviously, a discrete set of gates can’t be used to implement an arbitrary unitary operation

exactly, since the set of unitary operations is continuous. Rather, it turns out that a
discrete set can be used to approximate any unitary operation. To understand how this
works, we first need to study what it means to approximate a unitary operation. Suppose

U and V are two unitary operators on the same state space. U is the target unitary operator
that we wish to implement, and V is the unitary operator that is actually implemented

in practice. We define the error when V is implemented instead of U by

E(U, V ) ≡ max
|ψ〉
‖(U − V )|ψ〉‖, (4.61)

where the maximum is over all normalized quantum states |ψ〉 in the state space. In
Box 4.1 on page 195 we show that this measure of error has the interpretation that if

E(U, V ) is small, then any measurement performed on the state V |ψ〉 will give approx-
imately the same measurement statistics as a measurement of U |ψ〉, for any initial state
|ψ〉. More precisely, we show that if M is a POVM element in an arbitrary POVM, and

PU (or PV ) is the probability of obtaining this outcome if U (or V ) were performed with
a starting state |ψ〉, then

|PU − PV | ≤ 2E(U, V ) . (4.62)

Thus, if E(U, V ) is small, then measurement outcomes occur with similar probabilities,
regardless of whether U or V were performed. Also shown in Box 4.1 is that if we

perform a sequence of gates V1, . . . , Vm intended to approximate some other sequence

of gates U1, . . . , Um, then the errors add at most linearly,

E(UmUm−1 . . . U1, VmVm−1 . . . V1) ≤
m∑

j=1

E(Uj , Vj) . (4.63)

The approximation results (4.62) and (4.63) are extremely useful. Suppose we wish

to perform a quantum circuit containing m gates, U1 through Um. Unfortunately, we

are only able to approximate the gate Uj by the gate Vj . In order that the probabilities

of different measurement outcomes obtained from the approximate circuit be within a

tolerance Δ > 0 of the correct probabilities, it suffices that E(Uj , Vj) ≤ Δ/(2m), by the
results (4.62) and (4.63).

Universality of Hadamard + phase + + π/8 gates
We’re now in a good position to study the approximation of arbitrary unitary operations

by discrete sets of gates. We’re going to consider two different discrete sets of gates, both
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Box 4.1: Approximating quantum circuits

Suppose a quantum system starts in the state |ψ〉, and we perform either the unitary
operation U , or the unitary operation V . Following this, we perform ameasurement.
Let M be a POVM element associated with the measurement, and let PU (or PV )

be the probability of obtaining the corresponding measurement outcome if the

operation U (or V ) was performed. Then

|PU − PV | =
∣∣〈ψ|U †MU |ψ〉 − 〈ψ|V †MV |ψ〉

∣∣ . (4.64)

Let |Δ〉 ≡ (U − V )|ψ〉. Simple algebra and the Cauchy–Schwarz inequality show
that

|PU − PV | =
∣∣〈ψ|U †M |Δ〉 + 〈Δ|MV |ψ〉

∣∣ . (4.65)

≤ |〈ψ|U †M |Δ〉| + |〈Δ|MV |ψ〉| (4.66)

≤ ‖|Δ〉‖ + ‖|Δ〉‖ (4.67)

≤ 2E(U, V ). (4.68)

The inequality |PU − PV | ≤ 2E(U, V ) gives quantitative expression to the idea
that when the error E(U, V ) is small, the difference in probabilities between mea-
surement outcomes is also small.

Suppose we perform a sequence V1, V2, . . . , Vm of gates intended to approximate

some other sequence of gates, U1, U2, . . . , Um. Then it turns out that the error

caused by the entire sequence of imperfect gates is at most the sum of the errors

in the individual gates,

E(UmUm−1 . . . U1, VmVm−1 . . . V1) ≤
m∑

j=1

E(Uj , Vj). (4.69)

To prove this we start with the case m = 2. Note that for some state |ψ〉 we have
E(U2U1, V2V1) = ‖(U2U1 − V2V1)|ψ〉‖ (4.70)

= ‖(U2U1 − V2U1)|ψ〉 + (V2U1 − V2V1)|ψ〉‖. (4.71)

Using the triangle inequality ‖|a〉 + |b〉‖ ≤ ‖|a〉‖ + ‖|b〉‖, we obtain
E(U2U1, V2V1) ≤ ‖(U2 − V2)U1|ψ〉‖ + ‖V2(U1 − V1)|ψ〉‖ (4.72)

≤ E(U2, V2) + E(U1, V1), (4.73)

which was the desired result. The result for general m follows by induction.

of which are universal. The first set, the standard set of universal gates, consists of the
Hadamard, phase, controlled- and π/8 gates. We provide fault-tolerant constructions
for these gates in Chapter 10; they also provide an exceptionally simple universality

construction. The second set of gates we consider consists of the Hadamard gate, phase

gate, the controlled- gate, and the Toffoli gate. These gates can also all be done fault-

tolerantly; however, the universality proof and fault-tolerance construction for these gates

is a little less appealing.

We begin the universality proof by showing that the Hadamard and π/8 gates can be
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