Introduction to Quantum Computing

Javier Orduz CSI 5V93

August 11, 2021

JO 0.0

Contents

Ι	The Quantum Fourier Transform and its application					
1	Obj	ectives	g			
2	2 Activities, materials and more					
3	Introduction					
	3.1	Quantum Circuit that implements QFT	17			
	3.2	Quantum Phase estimation	18			
		3.2.1 QPE uses two registers	19			
	3.3	Summary: QFT and QPE	21			
		3.3.1 Algorithms	21			

JO 0.0

Part I

The Quantum Fourier Transform and its application

JO 0.0

In this chapter, we talk about \dots

1. Modern Physics: Quantum _____

I need to cr the slides an take materia JO 0.0

Chapter 1

Objectives

The chapter's objective is

General objective

Experiment with simple quantum algorithms in the quantum circuit model.

JO 1.0

Chapter 2

Activities, materials and more

In this chapter you will use:

- Computer
- Mobile phone
- \bullet tablet

In activities section, we will use:

- Kahoot
- Padlet
- GForms
- \bullet etc.

JO 2.0

Chapter 3

Introduction

Quantum computers can efficiently perform some tasks which are not feasible on a classical computer.

In this chapter develop the Quantum Fourier Transformation (QFT).

QFT

It is an algorithm

- Quantum
- Efficient

for performing a Fourier transforms of classical data.

Some of the details

- Phase estimation (find unitary operators)
- order-finding problem and factoring problem
- counting solutions (phase estimation and quantum search algorithm)

Options to find solutions,

Transform into known solutions

A great discovery of quantum computation has been that some such transformations can be computed much faster on a quantum computer than on a classical computer, a discovery which has enabled the construction of fast algorithms for quantum computers.

Classical discrete Fourier Transformation

$$y_k \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N}$$
 (3.1)

Quantum Fourier Transformation (QFT)

$$|j\rangle \to \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} |k\rangle$$
 (3.2)

QFT on an orthonormal basis $\{|0\rangle,..,\{|N-1\rangle\}$ is a Linear operator. The action on an arbitrary state

$$\sum_{j=0}^{N-1} x_j |j\rangle \longrightarrow \sum_{k=0}^{N-1} y_k |k\rangle \tag{3.3}$$

where N is the length of the vector, x, y are vector of complex numbers (inputs, outputs). We rewrite the eq. (3.2), We will do $N = 2^n$, n us some integer and $\{|0\rangle, ..., |2^n - N\rangle\}$ is the computation basis for an n qbit quantum computer.

$$|j\rangle \rightarrow \frac{1}{2^{n/2}} \sum_{k=0}^{2^{n}-1} e^{2\pi i j k/2^{n}} |k\rangle$$
 (3.4)

If we do same for more kets, then if n = 1

$$|j\rangle \rightarrow \frac{1}{2^{1/2}} \sum_{k_1=0}^{1} e^{2\pi i j k_1/2} |k_1\rangle$$

$$|j\rangle \rightarrow \frac{1}{2^{1/2}} \sum_{k_2=0}^{1} e^{2\pi i j k_2/2} |k_2\rangle$$

$$|j\rangle \rightarrow \frac{1}{2^{1/2}} \sum_{k_3=0}^{1} e^{2\pi i j k_3/2} |k_3\rangle$$
...
$$|j\rangle \rightarrow \frac{1}{2^{m/2}} \sum_{k_3=0}^{1} e^{2\pi i j k_m/2^m} |k_m\rangle$$

Note in the argument of the exponential function the summation is over k's. But we want a string of qbits (note we do $m \to n$)

$$|j_{1}j_{2}...j_{l}\rangle \rightarrow \frac{1}{2^{1/2}} \sum_{k=0}^{1} e^{2\pi i j k_{1}/2} \otimes \frac{1}{2^{1/2}} \sum_{k=0}^{1} e^{2\pi i j k_{2}/2} \otimes \frac{1}{2^{1/2}} \sum_{k=0}^{1} e^{2\pi i j k_{3}/2} \otimes ... \otimes \frac{1}{2^{n/2}} \sum_{k=0}^{1} e^{2\pi i j_{n} k_{n}/2^{n}} |k_{1}k_{2}...k_{n}\rangle$$

$$(3.5)$$

Then we can put more qubits as (use eq. (3.4))

$$|j_{1}j_{2}...j_{l}\rangle \rightarrow \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{1} ... \sum_{k_{n}=0}^{1} e^{2\pi i j \left(\sum_{l=1}^{n} k_{l} 2^{-l}\right)} |k_{1}...k_{n}\rangle$$

$$= \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{1} ... \sum_{k_{n}=0}^{1} \bigotimes_{l=1}^{n} e^{2\pi i j k_{l} 2^{-l}} |k_{l}\rangle$$

$$= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left[\sum_{k_{1}=0}^{1} e^{2\pi i j k_{l} 2^{-l}} |k_{l}\rangle\right]$$
(3.6)

Where we used,

$$k_n = \sum_{l=1}^{n} k_l 2^{n-l}$$

$$k_n 2^{-n} = \sum_{l=1}^{n} k_l 2^{-l}$$
(3.7)

with $k = k_1 k_2 ... k_n$.

We expand for 0 and 1, and put everything in terms of n

$$|j_{1}j_{2}...j_{n}\rangle \rightarrow \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left[|0\rangle + e^{2\pi i 0 \cdot j 2^{-l}} |1\rangle \right]$$

$$= \frac{\left(|0\rangle + e^{2\pi i 0 \cdot j_{n}} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0 \cdot j_{n-1}j_{n}} |1\rangle \right) \cdots \left(|0\rangle + e^{2\pi i 0 \cdot j_{1}j_{2}\cdots j_{n}} |1\rangle \right)}{2^{n/2}} (3.8)$$

where (binary fraction) $0 \cdot j_{l} j_{l+1} ... j_{m} = j_{l}/2 + j_{l+1}/4 + \cdots + j_{m}/2^{m-l+1}$.

- 1. QFT is unitary
- 2. Transformation between Computational basis to QFT basis,

$$|\tilde{x}\rangle = QFT |x\rangle$$
 (3.9)

where \tilde{x} is on Fourier basis and x computational basis (see on the right hand eq. (3.4))

Example 1 $\{ |\tilde{0}\rangle, |\tilde{1}\rangle \}$ We take n=1 and the eq. (3.4)

$$\begin{split} \left| \tilde{0} \right\rangle &= \frac{1}{2^{1/2}} \sum_{k=0}^{2^{1}-1} e^{2\pi i \cdot 0 \cdot k/2^{1}} \left| k \right\rangle \\ &= \frac{1}{2^{1/2}} \sum_{k=0}^{1} e^{2\pi i \cdot 0 \cdot k/2^{1}} \left| k \right\rangle \\ &= \frac{1}{2^{1/2}} \sum_{k=0}^{1} \left| k \right\rangle \\ &= \frac{1}{2^{1/2}} \left(\left| 0 \right\rangle + \left| 1 \right\rangle \right) \end{split}$$

and

$$|\tilde{1}\rangle = \frac{1}{2^{1/2}} \sum_{k=0}^{2^{1}-1} e^{2\pi i \cdot 1 \cdot k/2^{1}} |k\rangle$$
$$= \frac{1}{2^{1/2}} \sum_{k=0}^{1} e^{2\pi i k/2} |k\rangle$$
$$|\tilde{1}\rangle = \frac{1}{2^{1/2}} \Big(|0\rangle - |1\rangle \Big)$$

Example 2 Multiple qbits Consider n = 3

$$|j\rangle = \frac{1}{2^{3/2}} \sum_{k=0}^{2^{3}-1} e^{2\pi i j k/2^{3}} |k\rangle$$

$$= \frac{1}{2^{3/2}} \sum_{k=0}^{7} e^{2\pi i j k/2^{3}} |k\rangle$$
(3.10)

with n = 3, we have

$$|000\rangle \quad |001\rangle \quad |010\rangle \quad |011\rangle |100\rangle \quad |101\rangle \quad |110\rangle \quad |111\rangle$$
 (3.11)

We can use, for example,

$$\frac{1}{2^3} \Big(|100\rangle = 2^2(1) + 2^1(0) + 2^0(0) = 4 \Big)$$
 (3.12)

$$\frac{1}{2^3} \Big(|101\rangle = 2^2(1) + 2^1(0) + 2^0(1) = 5 \Big)$$
 (3.13)

Example 3 n = 3 and $|x\rangle = |5\rangle$ Consider these values for n and $|x\rangle$, using eq. (3.8)

$$QFT |x\rangle = \frac{\left(|0\rangle + e^{2\pi i 0.j_1} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.j_1 j_2} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.j_1 j_2 j_3} |1\rangle \right)}{2^{3/2}}$$

$$= \frac{\left(|0\rangle + e^{2\pi i x 2^{-1}} |1\rangle \right) \left(|0\rangle + e^{2\pi i x 2^{-2}} |1\rangle \right) \left(|0\rangle + e^{2\pi i x 2^{-3}} |1\rangle \right)}{2^{3/2}}$$

$$= \frac{\left(|0\rangle + e^{2\pi i 5/2} |1\rangle \right) \left(|0\rangle + e^{2\pi i 5/2^2} |1\rangle \right) \left(|0\rangle + e^{2\pi i 5/2^3} |1\rangle \right)}{2^{3/2}}$$

where, we used eqs. (3.6), (3.7) and (3.13) (last one is the initial representation state)
Reminder:

$$2\pi i \left(\frac{5}{2}\right) = 2\pi i \left(\frac{2^2}{2} + \frac{1}{2}\right)$$
$$= 2\pi i \left(2 + \frac{1}{2}\right)$$

Since, $e^{2\pi iz} = 1$, for any integer z, $e^{2\pi i \left(\frac{5}{2}\right)} = e^{2\pi i \left(2 + \frac{1}{2}\right)} = e^{2\pi i \left(\frac{1}{2}\right)} = e^{\pi_i} = -1$

Exercise 1 n = 3 and $|x\rangle = |5\rangle$ Use eq. (3.6) to obtain,

$$QFT |x\rangle = \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left[\sum_{k_l=0}^{1} e^{2\pi i x k_l 2^{-l}} |k_l\rangle \right]$$
(3.14)

as a tensor product in terms of x.

3.1 Quantum Circuit that implements QFT

Eq. (3.8) is an expression shows each qbit can be given by

$$|j\rangle \sim$$
 qbit in the QFT basis $|0\rangle + |1\rangle$ Hadamard gate $+e^{2\pi 0.j/2^l} |1\rangle$ Unitary transformation like R_k .

Notice, we have two important things,

- 1. Phase is qbit-dependent
- 2. Need more components with more 1 (see the second term with the exponential function).
- 3. We need Hadamard gates.
- 4. We need phase gate.

$$R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix} \tag{3.15}$$

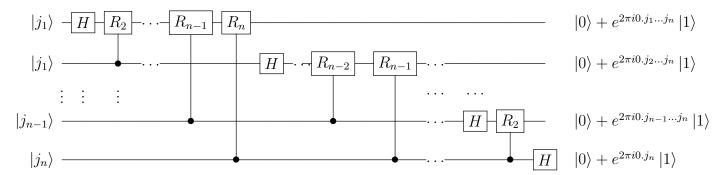


Figure 3.1: Quantum circuit for the QFT

Let us describe the algorithm,

1. Inputs $|\psi\rangle = |j_1 j_2 ... j_n\rangle$

- 2. After H gate $|\psi\rangle = \left(|0\rangle + e^{2\pi i j_1/2^1} |1\rangle\right) |j_2...j_n\rangle$
- 3. After $R_2 |\psi\rangle = (|0\rangle + e^{2\pi i(j_1/2^1 + j_2/2^2)} |1\rangle) |j_2...j_n\rangle$
- 4. After $R_{n-1} |\psi\rangle = (|0\rangle + e^{2\pi i(j_{n-1}/2^{n-1} + \dots + j_1/2^1)} |1\rangle) |j_2...j_n\rangle$
- 5. ...After $R_n |\psi\rangle = (|0\rangle + e^{2\pi i (j_n/2^n + ... + j_1/2^1)} |1\rangle) |j_2...j_n\rangle$

Apply each the controlled- R_n gates adds an extra bit to the phase of the co-efficient of the first $|1\rangle$. At the end, we have

$$\left(\left|0\right\rangle + e^{2\pi i j_n/2^n} \left|1\right\rangle\right) \left|j_2 j_3 ... j_n\right\rangle \tag{3.16}$$

Recall

$$x = 2^{n-1}x_1 + 2^{n-2}x_2 + \dots + 2^0x_n$$

$$x/2^n = 2^1x_1 + \dots + 2^nx_n$$

6. and after step n

$$\left(\left| 0 \right\rangle + e^{2\pi i j_n / 2^n} \left| 1 \right\rangle \right) \left| j_2 j_3 ... j_n \right\rangle \tag{3.17}$$

Exercise 2 QFT implementation on the NB Go to this website QFT Qiskit and reproduce the notes in you NB. Share by Github jaorduz.

Exercise 3 Nielsen and Chuang. Do the 5.4-5.6 exercises, [1, pag. 221].

3.2 Quantum Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i}$, where the value of φ is unknown. The goal of the phase estimation algorithm is to estimate φ . Namely,

$$O|\psi\rangle = e^{i\theta_{\varphi}}|\psi\rangle \tag{3.18}$$

where $e^{i\theta_{\varphi}}$ are the eigenvalues of O. Question: Can we extract θ_{φ} given the ability to prepare $|\psi\rangle$? We can use Quantum Phase Estimation (QPE). Things we should assume

- We available black boxes (oracles) capable of preparing the state $|u\rangle$ and performing the controlled- U^{2^j} operation, for suitable non-negative integers j.
- The use of black boxes indicates that the phase estimation procedure is not a complete quantum algorithm in its own right. It is a complement (think on this as subroutine, module).

3.2.1 QPE uses two registers

- 1. First register (counting, t)
 - (a) The first register contains t qbits initially in the state $|0\rangle$.
 - \bullet t depends on
 - The number of digits for the outut in φ
 - ullet with what probability we wish the phase estimation procedure to be successful

This dependence is natural.

- 2. Second register
 - (a) It starts in $|u\rangle$, and contains as many qubits as is necessary to store $|u\rangle$.
 - First stage:
 - Apply the circuit fig. 3.2.
 - Second stage
 - Apply the inverse quantum Fourier transform on the first register. Use the QFT $(\mathcal{O}(t^2))$.
- 3. Final stage of QPE is to read out the state of the first register by doing a measurement in the computational basis Fig. 3.3. This is called a trick:

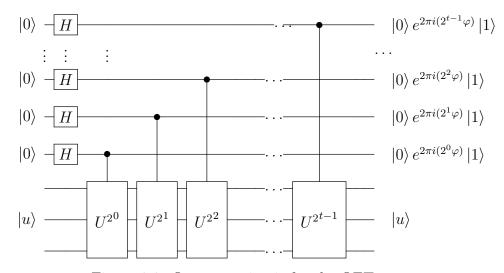


Figure 3.2: Quantum circuit for the QFT

Quantum circuit 3.2 is the representation for

$$\frac{1}{2^{t/2}} \left(|0\rangle + e^{2\pi i 2^{t-1}} |1\rangle \right) \left(|0\rangle + e^{2\pi i 2^{t-2}} |1\rangle \right) ... \left(|0\rangle + e^{2\pi i 2^{0}} |1\rangle \right) = \frac{1}{2^{t/2}} \sum_{k=0}^{2^{t}-1} e^{2i\pi\varphi k} |k\rangle$$
(3.19)

Figure 3.3: Schematics of the overall QPE procedure. / means a bundle of wires

Example 4 Hc-UH to obtain the phase We have the circuit shown in the fig. 3.4.

Figure 3.4: An overall schematic of the QPE algorithm (sometimes a.k.a protocol, this is similar to fig. 3.2). H controlled-U and H gates to find the phase. / means a bundle of wires

- 1. $|0\rangle |\psi\rangle$
- 2. $\frac{1}{\sqrt{2}} (|0\rangle |\psi\rangle + |1\rangle |\psi\rangle)$
- 3. $\frac{1}{\sqrt{2}} (|0\rangle |\psi\rangle + |1\rangle e^{i\theta_{\psi}} |\psi\rangle)$

4.
$$\frac{1}{2}\left(\left(|0\rangle + |1\rangle\right)|\psi\rangle + e^{i\theta_{\psi}}\left(|0\rangle - |1\rangle\right)|\psi\rangle\right) = \frac{1}{2}\left(|0\rangle\left(1 + e^{i\theta_{\psi}}\right) + |1\rangle\left(1 - e^{i\theta_{\psi}}\right)\right)|\psi\rangle$$

Considering $|\psi\rangle$ is any arbitrary qbit, the previous result (item (4)), we obtain,

Example 5 Probability $|0\rangle$

$$P_{0} = \left[\frac{1}{2}\left(\langle 0|\left(1+e^{-i\theta_{\psi}}\right)+\langle 1|\left(1-e^{-i\theta_{\psi}}\right)\right)\right]\left[\frac{1}{2}\left(|0\rangle\left(1+e^{i\theta_{\psi}}\right)+|1\rangle\left(1-e^{i\theta_{\psi}}\right)\right)\right]$$

$$= \left[\frac{1}{2}\left(\langle 0|\left(1+e^{-i\theta_{\psi}}\right)\right)\right)\left[\frac{1}{2}\left(|0\rangle\left(1+e^{i\theta_{\psi}}\right)\right)\right]$$

$$= \left|\frac{1}{4}\left(1+e^{-i\theta_{\psi}}\right)\left(1+e^{i\theta_{\psi}}\right)\right|$$

$$P_{0} = \cos^{2}\frac{\theta_{\psi}}{2}$$

$$(3.20)$$

which is the probability to measure $|0\rangle$.

Exercise 4 Probability $|1\rangle$. Probe $P_1 = \sin^2 \frac{\theta_{\psi}}{2}$

Previous results, examples 4 and 5, show we need to do a lot of measurements to determine θ_{ψ} . Therefore, we use the QFT, we get

$$\theta_{\psi} \to 2\pi \frac{\theta_{\psi}}{2^n} \tag{3.21}$$

3.3 Summary: QFT and QPE

QFT

1. We went from

$$\begin{aligned} |x\rangle &= |x_1\rangle \otimes |x_2\rangle \otimes |x_3\rangle \otimes \ldots \otimes |x_n\rangle \\ \text{to} \\ |\tilde{x}\rangle &= \frac{1}{\sqrt{2^n}}(|0\rangle + e^{i2\pi x/2}\,|1\rangle) \otimes (|0\rangle + e^{i2\pi x/2^2}\,|1\rangle) \otimes (|0\rangle + e^{i2\pi x/2^3}\,|1\rangle) \otimes (|\rangle + e^{i2\pi x/2^n}\,|1\rangle) \end{aligned}$$

2. We can apply QFT and QFT[†]

Quantum Fourier Transform:

QFT maps an *n*-qbit input state $|x\rangle$ into an output as

$$QFT|x\rangle = \frac{1}{2^{\frac{n}{2}}} \left(|0\rangle + e^{\frac{2\pi}{2}x} |1\rangle \right) \otimes \left(|0\rangle + e^{\frac{2\pi}{2^2}x} |1\rangle \right) \otimes \dots \otimes \left(|0\rangle + e^{\frac{2\pi i}{2^{n-1}}x} |1\rangle \right) \otimes \left(|0\rangle + e^{\frac{2\pi}{2^n}x} |1\rangle \right)$$
(3.22)

QPE

- 1. It can be though as a module to obtain the phase, considering multiple quits.
- 2. This algorithm uses same step 2 in the QFT plus

Inverse Quantum Fourier Transform (IQFT):

If we want to recover the state $|2^n\theta\rangle$, we should apply an inverse Fourier transform on the auxiliary register¹

$$\frac{1}{2^{\frac{n}{2}}} \sum_{k=0}^{2^{n-1}} e^{2\pi i \theta k} |k\rangle \otimes |\psi\rangle \stackrel{\mathcal{QFT}_n^{-1}}{\longrightarrow} \frac{1}{2^n} \sum_{x=0}^{2^n-1} \sum_{k=0}^{2^{n-1}} e^{-\frac{2\pi i k}{2^k} (x-2^n \theta)} |x\rangle \otimes |\psi\rangle$$
(3.23)

3. after previous steps, we measure

$$|2^n \theta\rangle |u\rangle \tag{3.24}$$

In other words,

$$\frac{1}{2^{n/2}} \sum_{j=0}^{2^{n}-1} e^{2\pi i \varphi j} |j\rangle |u\rangle \to |\tilde{\varphi}\rangle |u\rangle. \tag{3.25}$$

where $|\tilde{\varphi}\rangle$ is the estimator for ϕ when measured.

Some requirements are on the LINK

3.3.1 Algorithms

¹Ref. Qiskit QPE

Algorithm 1 QPE

Require: 1. A black box which performs a controlled-U^j operation, for integer j, 2. an eigenstate $|u\rangle$ of U with eigenvalue $e^{2\pi i\varphi_u}$, and 3. $t=n+\lceil\log 2+\frac{1}{2\epsilon}\rceil$

Ensure: An n-qbit approximation $\tilde{\varphi}_u$ to φ_u

Ensure: $\mathcal{O}(t^2)$ operations and one call to controlled-U^J black box. Succeeds with probability at least 1 - epsilon.

1:
$$|0\rangle |u\rangle$$
 $ightharpoonup$ Initial state

2:
$$\rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle |u\rangle$$
 \triangleright Superposition

$$3: \rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle U^j |u\rangle$$
 \triangleright Oracle

4:
$$\rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} e^{2\pi i j \varphi_u} |j\rangle |u\rangle$$
 \triangleright Result oracle

5:
$$\rightarrow |\hat{\varphi_u}\rangle |u\rangle$$
 $\triangleright \text{QFT}^{\dagger}$

6:
$$\rightarrow \tilde{\varphi_u}$$

Bibliography

 $[1]\,$ Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.