
Introduction to Quantum Computing

Javier Orduz
CSI 5V93

August 11, 2021

2

Contents

I Quantum Circuits & Quantum Algorithms (Basic Qiskit) 5

1 Objectives 9

2 Activities, materials and more 11

3 Algorithms 13
3.1 Black Box: Oracle Function . 13
3.2 Hadamard n . 15
3.3 Deutsch’s algorithms . 16
3.4 The Deutsch–Jozsa algorithm . 20
3.5 Grover’s algorithm: Quantum search algorithm 22
3.6 Shor’s algorithm . 25
3.7 Letter Grade Distribution . 27

3

4 CONTENTS

Part I

Quantum Circuits & Quantum
Algorithms (Basic Qiskit)

5

7

In this chapter, we talk about ...

8

Chapter 1

Objectives

The chapter’s objective is

General objective

Represent algorithms with quantum logical gates with Qiskit framework (or anyother).

9

10 CHAPTER 1. OBJECTIVES

Chapter 2

Activities, materials and more

In this chapter you will use:

• Computer

• Mobile phone

• tablet

• Github, Gitlab, Colab,

• IBM lab: IBM lab-Cognitive

• Strangeworks Strangeworks

• SILQ: SILW

• Pennylane

• Dwave

• Q#

• others

In activities section, we will use:

• Kahoot

• Padlet

• GForms

• etc.

11

https://labs.cognitiveclass.ai/logout
https://quantum-computing.ibm.com/
https://techcrunch.com/2020/06/15/silq-is-a-new-high-level-programming-language-for-quantum-computers/

12 CHAPTER 2. ACTIVITIES, MATERIALS AND MORE

Chapter 3

Algorithms

If you want to see one timeline of QC go to this link TimeLine (prezi)

3.1 Black Box: Oracle Function

Suppose we wish to search through a search space of N elements.

Rather than search the elements directly, we concentrate on the index to those elements,
which is just a number in the range 0 to N − 1.

For convenience we assume

• N = 2n so the index can be stored in n bits,

• and that the search problem has exactly M solutions, with 1 ≤M ≤ N.

We can propose a function f(x) to represent some particular cases, this function can take
input (integer, x) in the range {0, N − 1}.

13

https://prezi.com/view/14qQthKRz3YsUAXPT0E4/

14 CHAPTER 3. ALGORITHMS

Definition

f(x) =

{
1 solution
0 No solution

(3.1)

to the search problem.

Oracle function:

Oracle functions

Since it is assumed that one does not have access to the inner workings of the compu-
tation of this function, only to the result of its application.

Suppose we are supplied with a quantum oracle − a black box whose internal workings, but
which it is not important at this stage − with the ability to recognize solutions to the search
problem. This recognition is signalled by making use of an oracle qbit.
More precisely, the oracle is a unitary operator, O, defined by its action on the computational
basis:

|x〉|q〉 O→ |x〉|q ⊕ f(x)〉 (3.2)

where

1. |x〉 is the index register,

2. ⊕ denotes addition modulo 2,

3. and the oracle qubit |q〉 is a single qbit which is flipped if f(x) = 1, and is unchanged
otherwise, see eq. (3.1).

We can check whether x is a solution to our search problem by preparing |x〉 |0〉, applying
the oracle, and checking to see if the oracle qbit has been flipped to |1〉.
Oracle function is important in different algorithms.

Example 1 Oracle: Deutsch-Jozsa algorithm
Consider next steps

1.
|0〉 − |1〉√

2

2. If x is not a solution to the search problem, applying the oracle to the state

|x〉 (|0〉 − |1〉)√
2

does not change the state.

3.2. HADAMARD N 15

3. On the other hand, if x is a solution to the search problem, then |0〉 and |1〉 are
interchanged by the action of the oracle, giving a final state

−|x〉 (|0〉 − |1〉)√
2

.

4. The action of the oracle is thus:(
|0〉 − |1〉√

2

)
O−→ (−1)f(x)|x〉

(
|0〉 − |1〉√

2

)
With an oracle we want determine some property of the oracle using the minimal number
of queries. In summary, an oracle is a physical device that we cannot look inside, we use to
pass queries and get answers. Besides, on a quantum computer, an oracle must be reversible.

3.2 Hadamard n

Recall

H |0〉 = |+〉
H |1〉 = |−〉

(3.3)

Then we have

|x〉 H |y〉 = 1
21/2

∑
k∈{0,1}

(−1)k�x |k〉

Then in general,

|x0〉 H |y0〉

|x1〉 H |y1〉
...

...
... ...

|y〉 = 1
2n/2

∑
k∈{0,1}n

(−1)k�x |k〉
|xn−1〉 H |yn−1〉

where

|y〉 = H⊗n |x〉 =
1

2n/2

∑
k∈{0,1}n

(−1)k�x |k〉 (3.4)

and

k � x = (k2)n−1(x2)n−1 + ...+ (k2)1(x2)1 + (k2)0(x2)0 (3.5)

with k2 is the k represented in binary.
Eq. (3.4) is the superposition of all 2n bit strings states.

16 CHAPTER 3. ALGORITHMS

Example 2 |x〉 |01〉 Then

|0〉 H |+〉

|1〉 H |−〉

Considering eq. (3.4),

|y〉 = H⊗2 |x〉 =
1

2n/2

∑
k∈{0,1}2

(−1)k�x |k〉

=
1

2

(
(−1)k�x |00〉+ (−1)k�x |01〉+ (−1)k�x |10〉+ (−1)k�x |11〉

)
=

1

2

(
(−1)(0,0)�(0,1) |00〉+ (−1)(0,1)�(0,1) |01〉+ (−1)(1,0)�(0,1) |10〉+ (−1)(1,1)�(0,1) |11〉

)
=

1

2

(
|00〉 − |01〉+ |10〉 − |11〉

)

1

21/2

∑
k∈{0,1}2

(−1)k�x |k〉 (3.6)

In general,

H⊗n =
1√
2n

∑
x,y

(−1)x·y |x〉 〈y| (3.7)

3.3 Deutsch’s algorithms

Deutsch’s algorithm [3]

Deutsch showed that his quantum algorithm has better query complexity than any
possible classical algorithm: it can solve the problem with fewer calls to the black box
than is possible classically.

Given a Boolean function

f : Z2 → Z2,

determine whether f is constant.

Problem

Input: A black box for computing an unknown function function f : {0, 1} → {0, 1}.

Problem: Determine the value of f(0)⊕ f(1) by making querios of f .

3.3. DEUTSCH’S ALGORITHMS 17

Deutsch’s algorithm provides the first example of a truly quantum algorithm, one for which
there is no classical analog, and it was the first few quantum algorithms solve black box
problems [3].
The earliest quantum algorithms solve black box, or oracle, problems.

Black Box problem

A classical black box outputs f(x) upon input of x. A quantum black box behaves
like Uf , outputting

∑
x αx|x, f(x) ⊕ y〉 upon input of

∑
x αx|x〉|y〉. Black boxes are

theoretical constructs; they may or may not have an efficient implementation. For this
reason, they are of ten called oracles. The black box terminology emphasizes that only
the output of a black box can be used to solve the problem, not anything about its
implementation or any of the intermediate values computed along the way; we cannot
see inside it. The most common type of complexity discussed with respect to black
box problems is query complexity: how many calls to the oracle are required to solve
the problem.
Black box algorithms of low query complexity, algorithms that solve a black box prob-
lem with few calls to the oracle, are only of practical use if the black box has an efficient
implementation. The black box approach is very useful, however, in establishing lower
bounds on the circuit complexity of a problem. If the query complexity is Ω(N) -in
other words, at least Ω(N) calls to the oracle are required - then the circuit complexity
must be at least Ω(N).
Black boxes have been used to establish lower bounds on the circuit complexity for
quantum algorithms, but their first use in quantum computation was to show that the
quantum query complexity of certain black box problems was strictly less than the
classical query complexity: the number of calls to a quantum oracle needed to solve
certain problems is strictly less than the required number of calls to a classical oracle
to solve the same problem.
The first few quantum algorithms solve black box problems: Deutsch’s problem (sec-
tion 7.3.1), the Deutsch-Jozsa problem (section 7.5.1), the Bernstein-Vazirani problem
(section 7.5.2), and Simon’s problem (section 7.5.3). The most famous query com-
plexity result is Grover’s: that it takes only O(

√
N) calls to a quantum black box to

solve an unstructured search problem over N elements, where as the classical query
complexity of unstructured search is Ω(N). Grover’s algorithm, and the extent to
which its superior query complexity provide practical benefit, are discussed in chapter
9 [3, pag. 131].

The problem Deutsch’s algorithm solves is a black box problem. Deutsch showed that his
quantum algorithm has better query complexity than any possible classical algorithm. it
can solve the problem with fewer calls to the black box than is possible classically.

Deutsch’s quantum algorithm , described in this section, requires only a single call to a
black box for Uf to solve the problem.

Any classical algorithm requires two calls to a classical black box for Cf , one for each
input value.

18 CHAPTER 3. ALGORITHMS

The key to Deutsch’s algorithm is the nonclassical ability to place the second qubit of
the input to the black box in a superposition.

Since, whether we apply Uf on a single bit function f takes two qbits of input and produces
two qbits of output. On input |x〉 |y〉 , Uf produces

|x〉 |f(x)⊕ y〉 ,

so when

|y〉 = |0〉 ,

the result of applying Uf is |x〉|f(x)〉.
The algorithm applies Uf to

• the two-qubit state |+〉 |−〉, where the first qubit is a superposition of the two values
in the domain of f ,

• and the third qubit is in the superposition |−〉 = 1√
2
(|0〉 − |1〉). We obtain

Uf (|+〉|−〉) = Uf

(
1

2

(
|0〉+ |1〉

)(
|0〉 − |1〉

))

=
1

2
Uf

(
|0〉 |0〉 − |1〉 |0〉+ |1〉 |0〉 − |1〉 |1〉

)

=
1

2

(
Uf |0〉 |0〉 − Uf |0〉 |1〉+ Uf |1〉 |0〉 − Uf |1〉 |1〉

)

=
1

2

(
|0〉 |0⊕ f(0)〉 − |0〉 |0⊕ f(0)〉+ |1〉 |0⊕ f(1)〉 − |1〉 |1⊕ f(1)〉

)

=
1

2

(
|0〉
(
|0⊕ f(0)〉 − |1⊕ f(0)〉

)
+ |1〉

(
|0⊕ f(1)〉 − |1⊕ f(1)〉

))
(3.8)

In other words,

Uf (|+〉|−〉) =
1

2

1∑
x=0

|x〉(|0⊕ f(x)〉 − |1⊕ f(x)〉) (3.9)

1. When f(x) = 0
1√
2

(|0⊕ f(x)〉 − |1⊕ f(x)〉)

becomes
1√
2

(|0〉 − |1〉) = |−〉.

3.3. DEUTSCH’S ALGORITHMS 19

2. When f(x) = 1,
1√
2

(|0⊕ f(x)〉 − |1⊕ f(x)〉)

becomes
1√
2

(|1〉 − |0〉) = −|−〉.

Therefore

Uf

(
1√
2

1∑
x=0

|x〉|−〉

)
=

1√
2

1∑
x=0

(−1)f(x)|x〉|−〉

1. For f constant, (−1)f(x) is just a physically meaningless global phase, so the state is
simply |+〉|−〉.

2. For f not constant, the term (−1)f(x) negates exactly one of the terms in the superpo-
sition so, up to a global phase, the state is |−〉|−〉.

3. If we apply the Hadamard transformation H to the first qbit and then measure it, with
certainty we obtain |0〉 in the first case and |1〉 in the second case. Thus with a single
call to Uf we can determine, with certainty, whether f is constant or not.

This example shows that a quantum algorithm performs well, compares to any classical
algorithm!
The algorithm for Deutsch’s problem shows that even inherently quantum processes do not
have to be probabilistic.

Figure 3.1: Quantum circuit implementing Deutsch’s algorithm

where

|ψ0〉 = |01〉

|ψ1〉 =

[
|0〉+ |1〉√

2

][
|0〉 − |1〉√

2

]

20 CHAPTER 3. ALGORITHMS

A little thought shows that if we apply Uf to the state

|x〉(|0〉 − |1〉)√
2

then we obtain the state
(−1)f(x)|x〉(|0〉 − |1〉)√

2
.

Applying Uf to |ψ1〉 therefore leaves us with one of two possibilities:

|ψ2〉 =



±

[
|0〉+|1〉√

2

][
|0〉−|1〉√

2

]
if f(0) = f(1)

±

[
|0〉−|1〉√

2

][
|0〉−|1〉√

2

]
if f(0) 6= f(1)

|ψ3〉 =



± |0〉

[
|0〉−|1〉√

2

]
if f(0) = f(1)

± |1〉

[
|0〉−|1〉√

2

]
if f(0 6= f(1)

But f(0)⊕ f(1) = 0 if f(0) = f(1) and 1 otherwise. We can write,

|ψ3〉 = ± |f(0)⊕ f(1)〉

[
|0〉 − |1〉√

2

]
(3.10)

It means if we measure the first qbit we may determine f(0)⊕ f(1).
This algorithm uses

• Quantum parallelism

• Interference

• Superposition

We prepare two qbits: |+〉 and |−〉 . And apply H−gate on

3.4 The Deutsch–Jozsa algorithm

Problem

Input: A black-box for computing an unknown function function f : {0, 1}n → {0, 1}.

Promise: f is either a constant or a balanced function.

Problem: Determine whether f is constant or balanced by making queries to f.

3.4. THE DEUTSCH–JOZSA ALGORITHM 21

The Deutsch-Jozsa algorithm is a generalization of Deutsch’s algorithm. Again, this algo-
rithm allows us to determine whether a function f(x) is constant or balanced1, but this time
the function has multiple input values. If f(x) is constant, then the output is the same for all
input values x. If the function is balanced, then f(x) = 0 for half of the inputs and f(x) = 1
for the other half of the inputs, and vice versa. We start with an initial state that includes
n qubits in the state |0〉 and a singlequbit in the state |1〉. Hadamard gates are applied to
all qubits. The circuit is illustrated in Figure 3.2.

Figure 3.2: The Deutsch-Jozsa algorithm generizes Deutsch’s algorithm to handle a function
with n input values and determine whether or not it is constant or balanced.

We start off by calculating

|ψ′〉 =
(
H⊗n

) (
|0〉⊗n

)
⊗ (H|1〉).

From

H⊗n
(
|0〉⊗n

)
=

1√
2n

∑
x∈{0,1}n

|x〉

we see that this is

|ψ′〉 =
1√
2n

∑
x∈{0,1}n

|x〉
(
|0〉 − |1〉√

2

)
Next we apply Uf |x, y〉 = |x, y ⊕ f(x)〉 , to evaluate the function. The first n qubits are the
values of x and the last qubit plays the role of y as shown in the figure. The output state of
the Uf gate is

|ψ′′〉 =
1√
2n

∑
x

(−1)f(x)|x〉
(
|0〉 − |1〉√

2

)
.

Applying a Hadamard gate to an n qubit state |x〉 gives

H⊗n|x〉 =
1√
2n

∑
y

(−1)x·y|y〉

1The identity and bit flip functions are called balanced because the outputs are opposite for half the
inputs. So a function on a single bit can be constant or balanced. Whether a function on a single bit
is constant or balanced is a global property. What we’re going to see in the following development is that
Deutsch’s algorithm will let us put together a state that has all of the output values of the function associated
with each input value in a superposition state. Then we will use quantum interference to find out if the
given function is constant or balanced.

22 CHAPTER 3. ALGORITHMS

So the final output state is

|ψout 〉 =
1

2n

∑
y

∑
x

(−1)x·y+f(x)|y〉
(
|0〉 − |1〉√

2

)
Now we measure the n inputs. It might not be immediately obvious looking at |ψout 〉, but
there are two possible measurement results on |y〉 (which is the state of n inputs at this
stage) that are of interest. The possible results are as follows: Measurement of the first n
input qubits in |ψout 〉 returns all 0’s. In this case f(x) is constant. Otherwise, if at least one
of the qubits in |y〉 is found to be a 1 on measurement, f(x) is balanced[2].
Other way,

Figure 3.3: Quantum circuit implementing Deutsch-Jozsa algorithm

3.5 Grover’s algorithm: Quantum search algorithm

The search Problem

Input: A black box Uf for computing an unknown function f : {0, 1}n → {0, 1}.

Problem: Find an input x ∈ {0, 1}n such that f(x) = 1 [1, pag. 152].

This algorithm enables this search method to be speed up to O(
√
N) operations.

With this algorithm ´´searching an unsorted database” with N = 2n elements in O(
√
N)

time. Classical algorithm needs on average N/2 = O(
√
N) time. The goal is find w, given

an oracle Uf with
f : {0, 1}n → {0, 1}

f(x) =

{
1 if x = w

0 else if
(3.11)

and

f0(x) =

{
0 if x = 0000

1 else
(3.12)

3.5. GROVER’S ALGORITHM: QUANTUM SEARCH ALGORITHM 23

where the phase oracle is

Uf |x〉 = (−1)f(x) |x〉 (3.13)

where

Uf :

{
|w〉 → − |w〉
|x〉 → |x〉 ∀x 6= w

(3.14)

Then

Uf = 1− 2 |w〉 〈w| (3.15)

Then

Uf = 1− 2 |w〉 〈w| (3.16)

and

Uf 0 :

{
|0〉 → |0〉⊗n

|x〉 → − |x〉 ∀x 6= 00...000
(3.17)

Then

Uf 0 = 2 |0〉 〈0|⊗n − I (3.18)

The Grover iteration

G = (2|ψ〉〈ψ| − I)O (3.19)

We have next circuit,

Repeat r times

|0〉 H

Uf

H

Uf 0

H

y ∈ {0, 1}n

|0〉 H H H

|ψ0〉 |ψ1〉
Figure 3.4: Quantum circuit for the Grover algorithm.

Claim: y = w

Proof: We define a superposition state

|ψ1〉 = H⊗n |0〉⊗n = 2−
n
2

2n−1∑
x∈{0,1}

|x〉 (3.20)

24 CHAPTER 3. ALGORITHMS

and (note the dashed line in the circuit)

V = H⊗nUf 0H
⊗n = H⊗n

(
2 |0〉 〈0|⊗n − I

)
H⊗n

= 2H⊗n |0〉 〈0|⊗nH⊗n −H⊗nIH⊗n

= 2 |ψ1〉 〈ψ1| − I (3.21)

where we used eq. (3.18) and eq. (3.20).

Process: This algorithm carries out the operation (V Uf)r on the state |ψ1〉 .

We use next geometric visualization,
FIG- ¿ Go to notes
Let the circuit (fig. 3.4) us describe,

1. Look at the geometric visualization

2. See the protocol

• We define

|ψ〉 =

√
2n − 1

2n

∣∣w†〉+

√
1

2n

∣∣w†〉 (3.22)

where first terms are not solutions and second are the summation of all solutions. If
we define sin θ/2 = 2−n/2

• Prepare |ψ〉
• Apply Uf = I − 2 |w〉 〈w| → reflection to

∣∣w†〉 .
• Apply V = 2 |ψ〉 〈ψ| − I → reflection to |ψ〉 . V Uf is a rotation by an angle θ.

• After r calls to the oracle , we obtain,

p(w) ≥ 1− sin2(θ/2) = 1− 2−n = cos2(θ/2) (3.23)

•

In this part we can obtain, we see after r applications of the algorithm the state is rotated
by rθ,

rθ +
θ

2
=

π

2

r =
π

2θ
− θ

2θ

r =
π

4 arcsin(2−n/2)
− 1

2

If n→∞ then r = O(
√
n)

3.6. SHOR’S ALGORITHM 25

3.6 Shor’s algorithm

Integer factorization problem

Input: An integer N .

Problem: Output positive integers p1, p2, . . . , pl, r1, r2, . . . , rl where the pi are distinct
primes and N = pr11 p

r2
2 . . . p

rl
l [1, pag. 132].

In 1994 when P. Shor, working for Bell Labs, proposed an algorithm for factoring large
numbers on a quantum computer. This algorithm was important for the computer scientists.
And it was interesting for the quantum cryptography, since on this area we want efficient
methods to factoring large numbers.
While it has not been proven that factoring large numbers can not be archived on a classical
computer in polynomial time, as of 2015 the fastest algorithm publicly available for factoring
large number runs in

O(e
64
9
n1/3(logn)2/3),

operations where n is the number of bits used to represent the number: this runtime exceeds
polynomial time. In contrast Shor’s algorithm runs in

O((log n)2 log log n)

on a quantum computer, and then must perform O(log n) steps of post processing on a
classical computer. Overall then this time is polynomial. This discovery propelled the study
of quantum computing forward, as such an algorithm is much sought after.

• This algorithm uses parallelism [3, pag. 163] to propduce a superposition of all values
of this function in one step.

• After QFT to create a state in which most of the amplitde is in states close to multiples
of reciprocal of the period.

• With high probability, measuring the state yields information from which, by classical
means, the period can be extracted. The period is then used to factor M

The function

f(r) = xr mod n (3.24)

is a periodic function, where x is an integer coprime2 to n. In the context of Shor’s algorithm
n will be the number we wish to factor. Calculating this function for an exponential number
of a’s would take exponential time on a classical computer. Shor’s algorithm utilizes quantum
parallelism to perform the exponential number of operations in one step.

2Relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. In
other words, two numbers are coprime it means that their greatest common divisor is 1. Or Two integers
are relatively prime if they share no prime factors

26 CHAPTER 3. ALGORITHMS

• We use this function to factorize large numbers because

• since f(a) is periodic, (r is the period)

Therefore

xr = 1 mod n

x(r/2)2 = xr = 1 mod n

x(r/2)2 − 1 = 0 mod n

(xr/2 − 1)(xr/2 + 1) = 0 mod n (3.25)

Eq. (3.25) is true if only if

xr = 1 mod n (3.26)

and r is even. Then we obtain eq. (3.24).
Now the task is factoring n

• randomly choose an integer x and determine the period r of eq. (3.24).

Shor’s algorithm

Shor’s quantum algorithm attacks the problem of efficiently finding the period of a
function. In other words, we use order finding to find the factors of some odd integer
N.

Shor’s algorithm was fundamental in demonstrating the power and importance of quantum
computation. This is an algorithm that can be used to factor prime numbers - meaning
that it can be used to break encryption codes if a practical quantum computer is ever built.
Needless to say, this algorithm got the attention of a lot of people [2, pag. 216].
The first thing we need to know in order to do Shor’s algorithm is order finding . Let x
and N be positive integers with no common factors such that x < N . The order of x is the
smallest positive integer r such that

xr = 1 mod N

(9.50)

Example 3 what mod N means? First of all, x and N can’t have any common factors
because their greatest common divisor is 1.
Suppose that we let x = 5 and N = 44. To find xr = a mod N , we compute xr and subtract
N until we get the last integer greater than 0. The first two cases are less than N = 44, so
we don’t do anything: 51 = 5 and 52 = 25. Now since 53 = 125, we note that (44)(2) = 88
and 125 − 88 = 37. Hence 53 = 37(mod44). Next 54 = 625. We have (14)(44) = 616, and
so 54 = 9(mod44). Finally 55 = 3125. It turns out that 71× 44 = 3124, which is 1 less than
55 = 3125. This is where we stop. Hence

55 = 1(mod44)

3.7. LETTER GRADE DISTRIBUTION 27

The order of 5 is 5 in this case. As you can see, plugging away like this, finding the powers
xr = 1(modN) can be very time-consuming. With large numbers it will swamp the best
computers available, the time required is exponential in logN . This problem can be solved
far more efficiently by using a quantum algorithm based on phase estimation.

Objective is to factorize the prime numbers.

1. Randomly choose an integer x such that 0 < x < N . Use the Euclidean algorithm to
determine whether x and N are relatively prime. If not, we have found a factor of M .
Otherwise, apply the rest of the algorithm.

2. Use quantum parallelism to compute f(x) = xr mod N on the superposition of inputs,
and apply a quantum Fourier transform to the result.

3. Measure. With high probability, a value r close to a multiple of 2n

r
will be obtained.

4. Use classical methods to obtain a conjectured period r from the value v.

5. When r is even, use the Euclidean algorithm to check efficiently whether ar/2 + 1 (or
aq/2 − 1

)
has a nontrivial common factor with N .

6. Repeat all steps if necessary[3, pag. 164].

3.7 Letter Grade Distribution

Final letter grades will be assigned at the discretion of the instructor, but here is a minimum
guideline for letter grades:

≥ 90.00 A 70.00 - 72.99 C
85.00 - 89.99 A- 67.00 - 69.99 C-
82.00 - 84.99 B+ 64.00 - 66.99 D+
79.00 - 81.99 B 60.00 - 63.99 D
76.00 - 78.99 B- ≤ 59.99 F
73.00 - 75.99 C+

28 CHAPTER 3. ALGORITHMS

Bibliography

[1] Phillip Kaye, Raymond Laflamme, and Michelle Mosca. An introduction to quantum
computing. Oxford Univ. Press, 2007.

[2] David McMahon. Quantum computing explained. John Wiley & Sons, 2007.

[3] Eleanor Rieffel and Wolfgang Polak. An introduction to quantum computing for non-
physicists. ACM Comput. Surv., 32(3):300–335, September 2000.

29

	I Quantum Circuits & Quantum Algorithms (Basic Qiskit)
	Objectives
	Activities, materials and more
	Algorithms
	Black Box: Oracle Function
	Hadamard n
	Deutsch's algorithms
	The Deutsch–Jozsa algorithm
	Grover's algorithm: Quantum search algorithm
	Shor's algorithm
	Letter Grade Distribution

