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Part I

Quantum Circuits & Quantum
Algorithms (Basic Qiskit)
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In this chapter, we talk about ...

1. Modern Physics: Quantum (Go to previous slides)

2. Quantum Computing

qbits

Gates

single qbits state and Multistates

3. Bell states: I need to create
the slides and
take material

Entanglement

Superposition

measure
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Chapter 1

Objectives

The chapter’s objective is

General objective

Describe the behavior of basic elements and the inner working of algorithms, and use
Dirac’s notations.
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Chapter 2

Activities, materials and more

In this chapter you will use:

• Computer

• Mobile phone

• tablet

In activities section, we will use:

• Kahoot

• Padlet

• GForms

• etc.

11
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Chapter 3

Gates

We will use next gates,

Figure 3.1: Sample of the circut: lines are quantum wires, and rectangles represent the gates.

Figure 3.1 shows a circuit of depth three (3), space (width) four (4), and having five (5)
gates.
More gates,

3.1 Hadamard

H

Figure 3.2: Hadamard gate
H =

1√
2

(
1 1
1 −1

)
(3.1)

The Hadamard operator on one qubit may be written as

H =
1√
2

((
|0〉+ |1〉

)
〈0|+

(
|0〉 − |1〉

)
〈1|
)

(3.2)

Exercise 1 Write out the eq. (3.1) and figure out the eq. (3.2).

Example 1 Obtain

• H |0〉

• H |1〉

3.2 Pauli X

13
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X

Figure 3.3: Pauli X gate
X = NOT =

(
0 1
1 0

)
(3.3)

3.3 Pauli Y

Y

Figure 3.4: Pauli Y gate
Y =

(
0 −i
i 0

)
(3.4)

3.4 Pauli Z

Z

Figure 3.5: Pauli Z gate
Z =

(
1 0
0 −1

)
(3.5)

Exercise 2 You must compute the eigenvectors of the Pauli matrices.

The Pauli matrices can be represented as,

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
(3.6)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
(3.7)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

(
e−iθ/2 0

0 eiθ/2

)
(3.8)

Those the rotation operators about the x̂, ŷ, and ẑ axes. If we define n̂ = (nx, ny, nz), then
we have,

Rn̂(θ) ≡ e−i
θ
2
n̂·~σ = cos

θ

2
I − i sin

θ

2

(
nxX + nyY + nzZ

)
(3.9)

Example 2 Show

σXσY σX = −σY (3.10)
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Solution: (
0 1
1 0

)(
0 −i
i 0

)(
0 1
1 0

)
=

((
0 1
1 0

)(
0 −i
i 0

))(
0 1
1 0

)
=

(
i 0
0 −i

)(
0 1
1 0

)
=

(
0 i
−i 0

)
= −

(
0 −i
i 0

)
(3.11)

If we use

σX = |0〉 〈1|+ |1〉 〈0| (3.12)

σY = −i |0〉 〈1|+ i |1〉 〈0| (3.13)

σZ = |0〉 〈0| − |1〉 〈1| (3.14)

then eq. (3.10) can be written(
|0〉 〈1|+ |1〉 〈0|

)(
− i |0〉 〈1|+ i |1〉 〈0|

)(
|0〉 〈1|+ |1〉 〈0|

)
= −σY (3.15)

Exercise 3 Prove that σXRY (θ)σX = RY (−θ)

Exercise 4 Use definition for X = σX = σ1 = ( 0 1
1 0 ) to obtain equations (3.6)-(3.8)

Exercise 5 Express the Hadamard gate H as a product of RX and RZ rotations and eiφ for
some φ.

Exercise 6 Show:

• σi = σ†i where i = 1, 2, 3.

• σ2
X = σ2

Y = σ2
Z = I where I identity matrix.

• Show (the next three cyclic permutations):

[σX , σY ] = 2iσZ

[σZ , σX ] = 2iσY

[σY , σZ ] = 2iσX

3.5 Phase

15/35
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S

Figure 3.6: Phase gate
S =

(
1 0
0 i

)
(3.16)

We can express any arbitrary single qubit operator as

U = eiαRn̂(θ) (3.17)

and any operator in this way will be unitary.

3.6 π/8

Z

Figure 3.7: π/8 gate
T =

(
1 0
0 ei

π
4

)
(3.18)

Analogously to the eq. (3.10), we can give next theorem

Theorem 1 Z−Y Decomposition Let U be a unitary operator applied on a single qbit, then
there exist real numbers α, β and δ such that

U = eiαRz(β)Ry(γ)Rz(δ) (3.19)

Exercise 7 Suppose m̂ and n̂ are non-parallel real unit vectors in three dimensions. Use
Theorem 4.1 to show that an arbitrary single qubit unitary U may be written

U = eiαRn̂(β)Rm̂(γ)Rn̂(δ)

for appropriate choices of α, β, γ and δ.

Let {A,B,C} which a set of operators acting on single qbit, such as ABC = I and U =
eiαAXBXC, where X = σX and α is a overall phase factor.

Example 3 Consider

A ≡ Rz(β)Ry(γ/2) (3.20)

B ≡ Ry(−γ/2)Rz

(
− (δ + β)/2

)
(3.21)

C ≡ Rz

(
(δ − β)/2

)
(3.22)

. Note that

ABC = Rz(β)Ry

(γ
2

)
Ry

(
− γ

2

)
Rz

(
−δ − β

2

)
Rz

(
δ − β

2

)
= I (3.23)

Since σ2
X = X = I, and using Exercise 3, we express

XRy

(
−γ

2

)
XXRz

(
−δ + β

2

)
X = XBX = Ry

(γ
2

)
Rz

(
δ + β

2

)
.
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Thus

AXBXC = Rz(β)Ry

(γ
2

)
Ry

(γ
2

)
Rz

(
δ + β

2

)
Rz

(
δ − β

2

)
= Rz(β)Ry(γ)Rz(δ)

Thus U = eiαAXBXC and ABC = I, as it required.

Exercise 8 Propose A,B,C and α for the Hadamard gate.

Example 4 Obtain (with Dirac and Matrices notation)

• Rotation around X by π. σX |0〉 and σX |1〉

• Rotation around Y and phase flip. σY |0〉 and σY |1〉

• Rotation around Z by π. σZ |0〉 and σZ |1〉

• Hadamard (Superposition and change basis X → Z) H |+〉 and H |−〉

• S (phase) (change basis) S |+〉 = |+i〉 and S |−〉 = |−i〉

• SH (change basis) Z → Y. SH |0〉 and SH |1〉

3.7 Controlled-NOT

We have the CNOT gate in the quantum context and it has two input qbits:

• Control qbit •

• target qbit ⊕

This gate act as

|c〉 |t〉 → |c〉 |t⊕ c〉 (3.24)

where ⊕ denotes the modulo-2 addition.

|c〉 • |c〉

|t〉 |t⊕ c〉

Figure 3.8: Controlled-NOT gate
CNOT = ¬X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.25)

¬X = |00〉 〈00|+ |01〉 〈01|+ |10〉 〈11|+ |11〉 〈10| (3.26)

Consider |c〉 = |1〉 , what do you think it is happening?
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Definition 1 Let U be is a two qbit operation with a control and target qbit. This operation
has set the control qbit in order U is applied to the target qbit, otherwise the target qbit is
left alone.

|c〉 |t〉 → |c〉U c |t⊕ c〉 (3.27)

This operation is called controlled-U operation as is represented by

•

U

Exercise 9 Build the truth table for the eq. (3.24) with |c〉 → |1〉

Example 5 We can propose the XOR gate in quantum computing context as a XOR re-
versible. Quantum Computing gates are reversible, at least, ¬X.

〈00|10〉 = 〈0|1〉 〈0|0〉 = 0

〈01|10〉 = 〈0|1〉 〈1|0〉 = 0

〈11|10〉 = 〈1|1〉 〈1|0〉 = 0

〈10|10〉 = 〈1|1〉 〈0|0〉 = 1

We conclude that
¬X |10〉 = CNOT |10〉 = |11〉

When the target qubit is |1〉, we have

¬X |11〉 =
(
|00〉 〈00|+ |01〉 〈01|+ |10〉 〈11|+ |11〉 〈10|

)
|11〉

= |00〉 〈00|11〉+ |01〉 〈01|11〉+ |10〉 〈11|11〉+ |11〉 〈10|11〉
= |10〉

So we’ve confirmed that the controlled NOT gate flips the target qubit when the control bit
is |1〉. Now we can use what we’ve learned to find the action on the target qubit when it’s in
the state α |0〉+ β |1〉 . In this case

CN(α|10〉+ β|11〉) = αCN |10〉+ βCN |11〉 = α|11〉+ β|10〉

Therefore the CN takes α |0〉+ β |1〉 to β |0〉+ α |1〉 when the control bit is |1〉.

Exercise 10 Applied the CNOT to the state α |10〉+ β |11〉

3.8 Controlled-Z

The unitary matrix in the computational basis is,

18/35
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•

Z

•

•
Figure 3.9: CZSWAP gate

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (3.28)

3.9 Swap
×
×

Figure 3.10: Swap gate

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.29)

3.10 Controlled-phase gate

This gate...

•

S

Figure 3.11: Controlled-phase gate CPhase =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 (3.30)

3.11 Toffoli (CCNOT, CCX, TOFF) gate

This gate...

•

•

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(3.31)

Toffoli gate flips the third qubit, the target qubit, conditioned on the first two qubits, the
control qubits, being set to one.

Exercise 11 Check the exercise 4.20 in ref.[3, pag.179 ]
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3.11.1 Controlled-U operator for a single qbit

If we want to implement a controlled-U operation for arbitrary single qbit U, with a single
qbit operations and CNOT gate, we will follow next strategy to respect the theorem 1.

We are going to use a CNOT operation and qbits.

• Apply a phase shift: eiα on the 〈t| (target qbit). If |1〉 → |c〉 , there will be a phase
shift (eiα). Otherwise |c〉 will be left alone.

• We use U = eiαAXBXC and ABC = I.

If |1〉 → |c〉 , then |t〉 → eiαAXBXC |t〉

If |0〉 → |c〉 , then |t〉 → ABC |t〉

Next two circuits show the previous discussion.

•(
eiα 0
0 eiα

)
(

1 0
0 eiα

)

Are those circuits equivalents? Ans: yes!

|00〉 → |00〉
|01〉 → |01〉
|10〉 → eiα |10〉
|11〉 → eiα |11〉

(3.32)

Consider check the subsection3.11.2 for multiple qbits and come this section back.

•(
eiα 0
0 eiα

) • •
(

1 0
0 eiα

)

C B A

3.11.2 Conditioning on multiple qbits

In general, we can rewrite conditions, considering any U operator. We have

• n+ k qubits, and

• U is a k qubit unitary operator.

20/35
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We define the controlled operation Cn(U) as

Cn(U) |x1 ⊗ x2 ⊗ ...⊗ xn〉 |ψ〉 = |x1x2...xn〉Ux1·x2·...·xn |ψ〉 (3.33)

This operator is applied to the last k−qbits if the first |n〉 ← |1〉 , otherwise, nothing is done.
Therefore, we will introduce a new notation:

n = 1 •
n = 2 •
n = 3 •
n = 4 •
q = 1

Uq = 2

q = 3
we have n = 4 and k = 3

3.11.3 Implementation of Cn(U)

We will implement Cn(U) gates using our existing repertoire of gates, where U is an arbi-
trary single qubit unitary operation.

Figure 3.12: Networking implementing the C5(U) operation.

We suppose all control qbits are in the computational states, we need working qbits (ancilla
states: (n − 1) all are starting and ending in |0〉). Then the circuit divides up into three
stages.

1. Apply Toff |c1 · c2〉 . To reverse AND all the control bits c1, .., cn to produce c1 · .. · cn.
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2. Products

Toff |c1 · c2 · c3〉 , it changes second work qbits.

Toff |c1 · c2 · c3 · c4〉 , it changes third work qbits.

Toff |c1 · c2 · c3 · c4 · c5〉 , it changes fourth work qbits.

3. the last part of the circuit just reverses the steps of the first stage, returning all the
work qbits to their initial state, |0〉 .

where |ci〉 are control − i qbits.
we make use of a small number (n−1) of working qubits, which all start and end in the state
|0〉 . Suppose the control qubits are in the computational basis state |c1, c2, . . . , cn〉 . The first
stage of the circuit is to reversibly AND all the control bits c1, . . . , cn together to produce the
product c1 · c2 . . . cn. To do this, the first gate in the circuit ANDs c1 and c2 together, using
a Toffoli gate, changing the state of the first work qubit to |c1 · c2〉. The next Toffoli gate
ANDs c3 with the product c1 · c2, changing the state of the second work qubit to |c1 · c2 · c3〉 .
We continue applying Toffoli gates in this fashion, until the final work qubit is in the state
|c1 · c2 . . . cn〉 . Next, a U operation on the target qubit is performed, conditional on the final
work qubit being set to one. That is, U is applied if and only if all of c1 through cn are set.
Finally, the last part of the circuit just reverses the steps of the first stage, returning all the
work qubits to their initial state, |0〉. The combined result, therefore, is to apply the unitary
operator U to the target qubit, if and only if all the control bits c1 through cn are set, as
desired [3, pags. 184-185].

3.12 Measurement

Figure 3.13: Projection onto |0〉 and |1〉

The first principle is that classically conditioned operations can be replaced by quantum
conditioned operations.

Definition 2 (Principle of deferred measurement) Measurements can always be moved
from an intermediate stage of a quantum circuit to the end of the circuit; if the measurement
results are used at any stage of the circuit then the classically controlled operations can be
replaced by conditional quantum operations [3, pag. 186].

In quantum computing we can measure as an intermediate step in a quantum circuit, and the
results can be used to conditionally control subsequent quantum gates. But we can perform
a measure at the end of the circuit.

Definition 3 (Principle of implicit measurement) Without loss of generality, any un-
terminated quantum wires (qubits which are not measured) at the end of a quantum circuit
may be assumed to be measured.
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During a measurement onto the basis {|0〉 , |1〉}, the state will collapse into either state |0〉
or |1〉 and we call this a Z-emasurement, since we work on the eigenstates of σZ .

Example 6 (Transformation and Quantum Gates) A transformation is unitary if its
inverse is equal to its adjoint. Such transformations preserve inner products and are re-
versibles and continuous.
In quantum computing:

• Algorithms are represented by circuits. The information flows from left to right.

• Quantum gates represent unitary transformations applied to qubits in such a circuit.

Consider the Hadamart gate:

|ψ〉 H H |ψ〉

where is,

H =
1√
2

(
|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0| − |1〉 〈1|

)
Let the quantum circuit,

|a〉0 • H • • •

|a〉1

|ψ0〉 |ψ1〉 |ψ2〉
where (initial state are in |0〉),

|ψ0〉 = |0〉 ⊗ |0〉 = |00〉

|ψ1〉 =
(
H ⊗ I

)(
|ψ0〉

)
=
(
H ⊗ I

)(
|0〉 ⊗ |0〉

)
=

1√
2

(
|0〉 |0〉+ |1〉 |0〉

)
|ψ2〉 = CNOT |ψ1〉 =

1√
2

(
|00〉+ |11〉

)

3.13 Fredkin (Controlled-swap) gate

This gate...

•
×
×

Fredkin =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


(3.34)
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Exercise 12 • Calculate

σi ⊗ σi, where i = X, Y, Z

• Prove the following circuit identities:

CX1C = X1X2 (3.35)

CY1C = Y1X2 (3.36)

CZ1C = Z1 (3.37)

CX2C = X2 (3.38)

CY2C = Z1Y2 (3.39)

CZ2C = Z1Z2 (3.40)

Rz,1(θ)C = CRz,1(θ) (3.41)

Rx,2(θ)C = CRx,2(θ) (3.42)

Let subscripts denote which qubit an op-
erator acts on, and let C be a CNOT
with qubit 1 the control qubit and qubit
2 the target qubit [3, Pag. 185, exercise
4.31].
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Multistates

We already defined the tensor product

|a〉 ⊗ |b〉 = |a〉 |b〉 = |ab〉 (4.1)

and those states can be in different space vector (HA⊗HB = HAB)⊗H, where is the H is a
biggest Hilbert space. We use tensor product to describe multiple states. We also discussed
some two-qbit gates.
Recall some definition:

Definition 4 Uncorrelated are those we can write such as a tensor product.

|a〉A ⊗ |b〉B = |a〉A |b〉B = |ab〉AB (4.2)

Definition 5 Inner product for two tensor product:

〈ψA|ψB〉 =
(
〈aA| ⊗ 〈bA|

)(
|aB〉 ⊗ |bB〉

)
= 〈aA|aB〉 〈bA|bB〉 (4.3)

Definition 6 Bell or entangled states are whose we cannot write as a tensor product.

4.0.1 Bell States

We have ∣∣ψ00
〉

=
1√
2

(
|00〉+ |11〉

)
(4.4)∣∣ψ10

〉
=

1√
2

(
|00〉 − |11〉

)
(4.5)∣∣ψ01

〉
=

1√
2

(
|01〉+ |10〉

)
(4.6)∣∣ψ11

〉
=

1√
2

(
|01〉 − |10〉

)
(4.7)

or, in general, ∣∣ψij〉 = (I ⊗ σjxσiz)
∣∣ψ00

〉
(4.8)

25
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are not separable states (in terms of tensor product) and they are a basis, sometimes those
are called EPR (Einstein-Podolski-Rosen) states/pairs. Fig. 4.1 represents a basis change
from computation basis to Bell basis.

Exercise 13 Prove that |ψ00〉 6= |a〉 ⊗ |b〉 for all single qbit state |a〉 and |b〉 .

Next circuit is used for this

|i〉A H •
|ψij〉AB

|j〉B
Figure 4.1: Bell state representation

Quantum entanglement is a physical phenomenon that occurs when a group of particles are
generated, interact, or share spatial proximity in a way such that the quantum state of each
particle of the group cannot be described independently of the state of the others, including
when the particles are separated by a large distance.
This is a key element in effects such as quantum teleportation, fast quantum algorithms, and
quantum error-correction.

4.0.2 How many qbits must two parties exchange?

Consider

• they are to create a particular entangled state

• Alice and Bob share no prior entanglement

1. A and B share between them a Bell state, the want transform in into some other
entangled state.

2. What do they need?

3. they need to be communicated (classical channel or other mean)

4. what kind of measurements we do?

Von Neumann measurements

We do this kind of measurement in quantum computing and quantum communication,
and those are a projective measurements done respect to some orthonormal basis
b̂ = {|φj〉}.

A von Neumann measurement is such that projects the system onto the basis in which the
density matrix is diagonal.
On other words, the action of the von Neumann measurement is merely to select the basis
state that the system is already in.
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Example 7 Projector, operator or matrix state Given an orthonormal basis |ϕj〉, suppose
we have a state |ψ〉, which we write in this basis:

|ψ〉 =
∑
j

αj |ϕj〉

Recall that a Von Neumann measurement of |ψ〉 with respect to the basis {|ϕj〉} is described
by the orthogonal projectors {|ϕj〉 〈ϕj|}, and will output the result ’ j ’ with probability

Tr (|ψ〉 〈ψ‖ϕj〉 〈ϕj|) = Tr (〈ϕj | ψ〉 〈ψ | ϕj〉)
= 〈ϕj | ψ〉 〈ψ | ϕj〉
= |〈ϕj | ψ〉|2

= |αj|2

Given a device that will measure individual qubits in the computational basis, we can use
a quantum circuit to implement Von Neumann measurements of a multi-qubit register with
respect to any orthonormal basis |ϕj〉.

We talk about orthogonal operator given by

ρ = |ϕ〉 〈ϕ| (4.9)

this definition is relevant when one state is unknown.

Example 8 Suppose that A is a projection operator in H1 where A = |0〉 〈0| and B is a
projection operator in H2 where B = |1〉 〈1|. Find A⊗B|ψ〉 where[2, pag. 81]

|ψ〉 =
|01〉+ |10〉√

2

Using what we know about the action of tensor products of operators, we write

A⊗B|ψ〉 = A⊗B
(
|01〉+ |10〉√

2

)
=

1√
2

[(
A |0〉

)(
B |1〉

)
+
(
A |1〉

)(
B |0〉

)]
Now

A |0〉 = (|0〉 〈0|) |0〉 = |0〉 〈0| 0〉 = |0〉
A |1〉 = (|0〉 〈0|) |1〉 = |0〉 〈0| 1〉 = 0

B |0〉 = (|1〉 〈1|) |0〉 = |0〉 〈1| 0〉 = 0

B |1〉 = (|1〉 〈1|) |1〉 = |1〉 〈1| 1〉 = |1〉
Therefore we find that

A⊗B|ψ〉 =
1√
2
|0〉 |1〉

Exercise 14 Show that if A and B are Hermitian, then A ⊗ B is Hermitian. Hint: Use
two tensor product states: |ϕ1〉 = |α1〉 ⊗ |β1〉 , |ϕ2〉 = |α2〉 ⊗ |β2〉 and define the product
〈ϕ2|C |ϕ1〉 , where C = A⊗B.
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It will be handy to show

U ⊗ I =

(
U00I U01I
U10I U11I

)
(4.10)

Example 9 (Density matrix) Let us return to Alice, who controls the first qubit of the
EPR pair |ψ〉 = 1√

2
(|00〉 + |11〉) while Bob controls the second[4, pag. 212]. The density

matrix for the pure state |ψ〉 ∈ A⊗B is

ρψ = |ψ〉〈ψ|

=
1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

=
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

The mixed state of Alice’s qubit, which encapsulates all information that could be obtained
from any sequence of measurements on Alice’s qubit alone on a sequence of identical states
|ψ〉, is modeled by the density matrix ρAψ obtained from ρψ by tracing over Bob’s qubit,
ρAψ = trB ρψ The four entries a00, a01, a10, and a11 for a matrix representing ρAψ in the standard
basis can be computed separately:
a00 =

∑1
j=0〈0|〈j||ψ〉〈ψ||0〉|j〉 =

(
1
2

+ 0
)

= 1
2
, a01 =

∑1
j=0〈0|〈j||ψ〉〈ψ||1〉|j〉 = (0 + 0) = 0,

a10 =
∑1

j=0〈1|〈j||ψ〉〈ψ||0〉|j〉 = (0 + 0) = 0 a11 =
∑1

j=0〈1|〈j||ψ〉〈ψ||1〉|j〉 =
(
0 + 1

2

)
= 1

2
So

ρAψ = 1
2

(
1 0
0 1

)
. By symmetry, the density operator for Bob’s qubit is ρBψ = 1

2

(
1 0
0 1

)
.

4.1 Exercises

Exercise 15 Compute Z ⊗ I |ψ00〉

Example 10 The density matrix of one qubit of an EPR pair,

ρ =
1

2

(
1 0
0 1

)
(4.11)

corresponds to the point (0, 0, 0) in the center of the sphere, farthest from the boundary. In a
technical sense, this state is the least pure single-qubit mixed state possible: it is the maximally
uncertain state in that no matter in what basis it is measured, it gives the two possible answers
with equal probability. In contrast, for any pure state, there is a basis in which measurement
gives a deterministic result. For no state, mixed or pure, do measurements in two different
bases give deterministic results, so pure states are as certain as possible.
This notion of uncertainty can be quantified for general n -qubit states by an extension of
the classical information theoretic notion of entropy. The von Neumann entropy of a mixed
state with density operator ρ is defined to be

S(ρ) = − tr (ρ log2 ρ) = −
∑
i

λi log2 λi
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where λi are the eigenvalues of ρ (with repeats). As is done for classical entropy, take
0 log(0) = 0. The von Neumann entropy is zero for pure states; since the density operator
ρx for a pure state |x〉 is a projector, it has a single 1 -eigenvalue with n− 10 -eigenvalues,
so S (ρx) = 0. Observe that the maximally uncertain single qubit mixed state ρME has von
Neumann entropy S(ρ) = 1. More generally, a maximally uncertain n -qubit state has a
density operator that is diagonal with entries all 2−n; a maximally uncertain n -qubit state
ρ has von Neumann entropy S(ρ) = n.
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Exercise 16 Use the following examples to
verify the operations,

•
(√

2− i
)
− i
(
1−
√

2i
)

= −2i

•
(
3, 1
)(

3,−1
)(

1
5
. 1
10

)
= 2 + i

Exercise 17 Rewrite

• 1+2i
3−4i + 2−i

5i

• (1− i)4

Exercise 18 Probe(
z1 + z2

)n
=

n∑
k=0

n!

k!(n− k)!
zk1z

n−k
2 (4.12)

for n = 1, 2, . . . and k = 0, 1 . . .

Exercise 19 Show that H⊗n can be written
as

H⊗n =
1√
2n

∑
x,y

(−1)x�y|x〉〈y|. (4.13)

Write out matrix representation for H⊗2. In
(4.13), we use symbol � to represent the
module-2 dot product, sometimes people use:
· or •. Mod-2 product is defined by

x� y = x • y = x · y =

x0y0 ⊕ x1y1 ⊕ x2y0 ⊕ ...⊕ xn−1yn−1
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Quantum Circuits

This model (Quantum Gates [go to slides]) is inspired by the classical gates with their truth
table[1, pag. 12],

Figure 5.1: NOT logical classical gate

corresponding truth table is shown in the table (5.1)

x y
0 1
1 0

(5.1)

Figure 5.2: AND logical classical gate
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corresponding truth table is shown in the table (5.2)

x y x ∧ y
0 0 0
0 1 0
1 0 0
1 1 1

(5.2)

Since QC is related to a theory of reversible computing, we note that the NOT gate is
reversible while the AND gate is not.

Figure 5.3: Non-reversible AND gate

Example 11 (Simulating a non-reversible AND gate)

With the circuit in the fig. 5.3, we can simulate a non-reversible gate, besides, we keep a
copy of the inputs and add of the x0∧x1 operation, after it adds previous result to x2. We fix
x2 = 0 and obtain a non-reversible AND gate. Where ⊕ represents the logical exclusive-OR
operation, which it is the same addition modulo two.
Then, we can obtain a reversible version of the circuit if we replace the irreversible parts
with their reversible counterparts.

Example 12 (CNOT (3.25)) Consider the gate proposed in the section Controlled-NOT,
the corresponding circuit is given by,

|1〉 • |1〉

|0〉 |1〉 ⊕ |0〉

Figure 5.4: Controlled-NOT gate
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Chapter 6

Advances topics: Algorithms and
circuits

6.1 Why introduce density matrices?

They are very useful for situations in which one doesn’t know precisely which state one is
in.
Suppose our qbit could either be in the state |ψ〉, with probability Pψ, or in the State |φ〉,
with probability Pφ. What is the expectation value of some observable A, e.g. Iz?
The answer should be given by: Pψ× expectation value of A for |ψ〉 plus Pφ× expectation
value of A for |φ〉

PT = Pψ 〈ψ|A |ψ〉+ Pφ 〈φ|A |φ〉 .

Define
ρ = Pψ |ψ〉 〈ψ|+ Pφ |φ〉 〈φ| ,

Expectation value = tr(ρA) So ρ is a useful way of describing statistical mixtures of states:
features: Hermitian. ρ = ρ†, and normalization: tr(ρ) = 1.

6.2 Eigenvalues and Eigenvectors

Find the eigenvectors of σY = ( 0 −i
i 0 ).

Suppose λ are the eigenvalues of the matrix. The characteristic equation for the matrix is
det(σY − λI) = 0

(0− λ)(0− λ)− (−i · i) = 0 ⇒ λ = ±1

Let the eigenvector be

(
x
y

)
Then the eigenvector corresponding to λ = 1 we have

σY =

(
0 i
−i 0

)(
x
y

)
= λ

(
x
y

)
⇒ −iy = x

ix = y
⇒

x = 1

y = i

Normalizing this eigenvector we have the normalization factor
√

12 + 12 =
√

2.
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So the required normalized eigenvector corresponding to λ = 1 is

1√
2

(
1
i

)
Then the eigenvector corresponding to λ = −1 we have(

0 −i
i 0

)(
x
y

)
= λ

(
x
y

)
⇒ −iy = −x

ix = −y ⇒
x = 1

y = −i

Normalizing this eivenvector we have the normalization factor
√

12 + 12 =
√

2. So the
required normalized eigenvector corresponding to λ = 1 is

1√
2

(
1
−i

)
So the eigenvectors corresponding to each eigenvalues are

λ = 1→ 1√
2

(
1
i

)
, λ = −1→ 1√

2

(
1
−i

)
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