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Chapter 1

Classical and modern
Physics

Next passage reviews the physics in few words, gives a brief introduction and
provides good motivation [1].
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 Interactive content 
from this and other chapters may 
be assigned online in Enhanced 
Webassign.

c h a p t e r 

1
1.1 Standards of Length, Mass, 

and time

1.2 Matter and Model Building

1.3 Dimensional analysis

1.4 Conversion of Units

1.5 Estimates and Order-of-
Magnitude Calculations

1.6 Significant Figures

physics and 
Measurement

Like all other sciences, physics is based on experimental observations and quantitative 
measurements. the main objectives of physics are to identify a limited number of funda-
mental laws that govern natural phenomena and use them to develop theories that can pre-
dict the results of future experiments. the fundamental laws used in developing theories are 
expressed in the language of mathematics, the tool that provides a bridge between theory 
and experiment.
 When there is a discrepancy between the prediction of a theory and experimental 
results, new or modified theories must be formulated to remove the discrepancy. Many 
times a theory is satisfactory only under limited conditions; a more general theory might be 
satisfactory without such limitations. For example, the laws of motion discovered by Isaac 
Newton (1642–1727) accurately describe the motion of objects moving at normal speeds but 
do not apply to objects moving at speeds comparable to the speed of light. In contrast, the 
special theory of relativity developed later by albert Einstein (1879–1955) gives the same 
results as Newton’s laws at low speeds but also correctly describes the motion of objects at 
speeds approaching the speed of light. Hence, Einstein’s special theory of relativity is a more 
general theory of motion than that formed from Newton’s laws.
 Classical physics includes the principles of classical mechanics, thermodynamics, optics, 
and electromagnetism developed before 1900. Important contributions to classical physics 

Stonehenge, in southern England, 
was built thousands of years ago. 
Various theories have been proposed 
about its function, including a 
burial ground, a healing site, and 
a place for ancestor worship. One 
of the more intriguing theories 
suggests that Stonehenge was an 
observatory, allowing measurements 
of some of the quantities discussed 
in this chapter, such as position of 
objects in space and time intervals 
between repeating celestial events. 
(Stephen Inglis/Shutterstock.com)
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were provided by Newton, who was also one of the originators of calculus as a mathemati-
cal tool. Major developments in mechanics continued in the 18th century, but the fields of 
thermodynamics and electromagnetism were not developed until the latter part of the 19th 
century, principally because before that time the apparatus for controlled experiments in 
these disciplines was either too crude or unavailable.
 a major revolution in physics, usually referred to as modern physics, began near the end 
of the 19th century. Modern physics developed mainly because many physical phenomena 
could not be explained by classical physics. the two most important developments in this 
modern era were the theories of relativity and quantum mechanics. Einstein’s special the-
ory of relativity not only correctly describes the motion of objects moving at speeds com-
parable to the speed of light; it also completely modifies the traditional concepts of space, 
time, and energy. the theory also shows that the speed of light is the upper limit of the 
speed of an object and that mass and energy are related. Quantum mechanics was formu-
lated by a number of distinguished scientists to provide descriptions of physical phenomena 
at the atomic level. Many practical devices have been developed using the principles of 
quantum mechanics.
 Scientists continually work at improving our understanding of fundamental laws. 
Numerous technological advances in recent times are the result of the efforts of many 
scientists, engineers, and technicians, such as unmanned planetary explorations, a vari-
ety of developments and potential applications in nanotechnology, microcircuitry and 
high-speed computers, sophisticated imaging techniques used in scientific research and 
medicine, and several remarkable results in genetic engineering. the effects of such devel-
opments and discoveries on our society have indeed been great, and it is very likely that 
future discoveries and developments will be exciting, challenging, and of great benefit to 
humanity.

1.1 Standards of Length, Mass, and Time
To describe natural phenomena, we must make measurements of various aspects 
of nature. Each measurement is associated with a physical quantity, such as the 
length of an object. The laws of physics are expressed as mathematical relation-
ships among physical quantities that we will introduce and discuss throughout the 
book. In mechanics, the three fundamental quantities are length, mass, and time. 
All other quantities in mechanics can be expressed in terms of these three.
 If we are to report the results of a measurement to someone who wishes to repro-
duce this measurement, a standard must be defined. It would be meaningless if a 
visitor from another planet were to talk to us about a length of 8 “glitches” if we do 
not know the meaning of the unit glitch. On the other hand, if someone familiar 
with our system of measurement reports that a wall is 2 meters high and our unit 
of length is defined to be 1 meter, we know that the height of the wall is twice our 
basic length unit. Whatever is chosen as a standard must be readily accessible and 
must possess some property that can be measured reliably. Measurement standards 
used by different people in different places—throughout the Universe—must yield 
the same result. In addition, standards used for measurements must not change 
with time.
 In 1960, an international committee established a set of standards for the fun-
damental quantities of science. It is called the SI (Système International), and its 
fundamental units of length, mass, and time are the meter, kilogram, and second, 
respectively. Other standards for SI fundamental units established by the commit-
tee are those for temperature (the kelvin), electric current (the ampere), luminous 
intensity (the candela), and the amount of substance (the mole).



Chapter 2

Optics

Next passage exposes some ideas about optics, mirrors and images [1].
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This chapter is concerned with the images that result when light rays encounter flat 
or curved surfaces between two media. Images can be formed by either reflection or 
refraction due to these surfaces. We can design mirrors and lenses to form images with 
desired characteristics. In this chapter, we continue to use the ray approximation and 
assume light travels in straight lines. We first study the formation of images by mirrors and 
lenses and techniques for locating an image and determining its size. Then we investigate 
how to combine these elements into several useful optical instruments such as microscopes 
and telescopes.

36.1 Images Formed by Flat Mirrors
Image formation by mirrors can be understood through the behavior of light 
rays as described by the wave under reflection analysis model. We begin by con-
sidering the simplest possible mirror, the flat mirror. Consider a point source 
of light placed at O in Figure 36.1, a distance p in front of a flat mirror. The 
distance p is called the object distance. Diverging light rays leave the source and 
are reflected from the mirror. Upon reflection, the rays continue to diverge. The 
dashed lines in Figure 36.1 are extensions of the diverging rays back to a point of 

 36.1 Images Formed by  
Flat Mirrors

 36.2 Images Formed by Spherical 
Mirrors

 36.3 Images Formed by 
Refraction

 36.4 Images Formed by  
Thin Lenses

 36.5 Lens Aberrations

 36.6 The Camera

 36.7 The Eye

 36.8 The Simple Magnifier

 36.9 The Compound Microscope

 36.10 The Telescope

c h a p t e r 

36 Image Formation

The light rays coming from the 
leaves in the background of this 
scene did not form a focused image 
in the camera that took this photo-
graph. Consequently, the background 
appears very blurry. Light rays pass-
ing though the raindrop, however, 
have been altered so as to form a 
focused image of the background 
leaves for the camera. In this chap-
ter, we investigate the formation 
of images as light rays reflect from 
mirrors and refract through lenses. 
(Don Hammond Photography Ltd. RF )
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intersection at I. The diverging rays appear to the viewer to originate at the point 
I behind the mirror. Point I, which is a distance q behind the mirror, is called the 
image of the object at O. The distance q is called the image distance. Regardless 
of the system under study, images can always be located by extending diverging 
rays back to a point at which they intersect. Images are located either at a point 
from which rays of light actually diverge or at a point from which they appear to 
diverge.
 Images are classified as real or virtual. A real image is formed when all light rays 
pass through and diverge from the image point; a virtual image is formed when 
most if not all of the light rays do not pass through the image point but only appear 
to diverge from that point. The image formed by the mirror in Figure 36.1 is vir-
tual. No light rays from the object exist behind the mirror, at the location of the 
image, so the light rays in front of the mirror only seem to be diverging from I. 
The image of an object seen in a flat mirror is always virtual. Real images can be 
displayed on a screen (as at a movie theater), but virtual images cannot be displayed 
on a screen. We shall see an example of a real image in Section 36.2.
 We can use the simple geometry in Figure 36.2 to examine the properties of the 
images of extended objects formed by flat mirrors. Even though there are an infi-
nite number of choices of direction in which light rays could leave each point on 
the object (represented by a gray arrow), we need to choose only two rays to deter-
mine where an image is formed. One of those rays starts at P, follows a path perpen-
dicular to the mirror to Q , and reflects back on itself. The second ray follows the 
oblique path PR and reflects as shown in Figure 36.2 according to the law of reflec-
tion. An observer in front of the mirror would extend the two reflected rays back 
to the point at which they appear to have originated, which is point P 9 behind the 
mirror. A continuation of this process for points other than P on the object would 
result in a virtual image (represented by a pink arrow) of the entire object behind 
the mirror. Because triangles PQR and P 9QR are congruent, PQ 5 P 9Q , so |p | 5 |q |. 
Therefore, the image formed of an object placed in front of a flat mirror is as far 
behind the mirror as the object is in front of the mirror.
 The geometry in Figure 36.2 also reveals that the object height h equals the 
image height h9. Let us define lateral magnification M of an image as follows:

 M 5
image height

object height
5

h r
h

 (36.1)

This general definition of the lateral magnification for an image from any 
type of mirror is also valid for images formed by lenses, which we study in Sec-
tion 36.4. For a flat mirror, M 5 11 for any image because h 9 5 h. The posi-
tive value of the magnification signifies that the image is upright. (By upright 
we mean that if the object arrow points upward as in Figure 36.2, so does the 
image arrow.)
 A flat mirror produces an image that has an apparent left–right reversal. You 
can see this reversal by standing in front of a mirror and raising your right 
hand as shown in Figure 36.3. The image you see raises its left hand. Likewise, 
your hair appears to be parted on the side opposite your real part, and a mole 
on your right cheek appears to be on your left cheek.
 This reversal is not actually a left–right reversal. Imagine, for example, lying 
on your left side on the floor with your body parallel to the mirror surface. 
Now your head is on the left and your feet are on the right. If you shake your 
feet, the image does not shake its head! If you raise your right hand, however, 
the image again raises its left hand. Therefore, the mirror again appears to 
produce a left–right reversal but in the up–down direction!
 The reversal is actually a front–back reversal, caused by the light rays going 
forward toward the mirror and then reflecting back from it. An interesting 

The image point I is located 
behind the mirror a distance 
q from the mirror. The image 
is virtual.

Mirror

p q

O I

Figure 36.1  An image formed 
by reflection from a flat mirror.

Because the triangles PQR 
and P'QR are congruent, 
| p | � | q | and h � h�.                     

Object

h h'

P P'Qp q

R

Imageu

u

Figure 36.2 A geometric con-
struction that is used to locate the 
image of an object placed in front 
of a flat mirror.

The thumb is on the left side of 
both real hands and on the left 
side of the image. That the thumb 
is not on the right side of the 
image indicates that there is no 
left-to-right reversal.

Figure 36.3  The image in the mir-
ror of a person’s right hand is reversed 
front to back, which makes the right 
hand appear to be a left hand. 
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Chapter 3

Electromagnetism

Following pages show some equations, results and theoretical concepts on Elec-
tromagnetism [1].

9



 30.3 ampère’s Law 911

Analyze  The horizontal components of the magnetic forces on the levitated wire cancel. The vertical components are 
both positive and add together. Choose the z axis to be upward through the top wire in Figure 30.8b and in the plane 
of the page.

Find the total magnetic force in the upward direction on 
the levitated wire:

F
S

B 5 2 am0I1I2

2pa
 ,b cos u k̂ 5

m0I1I2

pa
, cos u k̂

Find the gravitational force on the levitated wire: F
S

g 5 2mg k̂

Apply the particle in equilibrium model by adding the 
forces and setting the net force equal to zero:

a F
S

5 F
S

B 1 F
S

g 5
m0I1I2

pa
, cos u k̂ 2 mg k̂ 5 0

Solve for the current in the wires on the ground: I 2 5
mg pa

m0I1, cos u

Substitute numerical values: I 2 5
10.400 kg 2 19.80 m/s2 2p 10.010 0 m 2

14p 3 1027 T # m/A 2 1100 A 2 110.0 m 2  cos 30.08

5 113 A

Finalize  The currents in all wires are on the order of 102 A. Such large currents would require specialized equip-
ment. Therefore, this situation would be difficult to establish in practice. Is the equilibrium of wire 1 stable or 
unstable?

30.3 Ampère’s Law
Looking back, we can see that the result of Example 30.1 is important because a 
current in the form of a long, straight wire occurs often. Figure 30.9 is a perspec-
tive view of the magnetic field surrounding a long, straight, current-carrying wire. 
Because of the wire’s symmetry, the magnetic field lines are circles concentric with 
the wire and lie in planes perpendicular to the wire. The magnitude of B

S
 is con-

stant on any circle of radius a and is given by Equation 30.5. A convenient rule for 
determining the direction of B

S
 is to grasp the wire with the right hand, positioning 

the thumb along the direction of the current. The four fingers wrap in the direc-
tion of the magnetic field.
 Figure 30.9 also shows that the magnetic field line has no beginning and no 
end. Rather, it forms a closed loop. That is a major difference between magnetic 
field lines and electric field lines, which begin on positive charges and end on 
negative charges. We will explore this feature of magnetic field lines further in 
Section 30.5.
 Oersted’s 1819 discovery about deflected compass needles demonstrates that a 
current-carrying conductor produces a magnetic field. Figure 30.10a (page 912) 
shows how this effect can be demonstrated in the classroom. Several compass nee-
dles are placed in a horizontal plane near a long, vertical wire. When no current is 
present in the wire, all the needles point in the same direction (that of the horizon-
tal component of the Earth’s magnetic field) as expected. When the wire carries a 
strong, steady current, the needles all deflect in a direction tangent to the circle as 
in Figure 30.10b. These observations demonstrate that the direction of the mag-
netic field produced by the current in the wire is consistent with the right-hand 
rule described in Figure 30.9. When the current is reversed, the needles in Figure 
30.10b also reverse.
 Now let’s evaluate the product B

S
? d sS for a small length element d sS on the cir-

cular path defined by the compass needles and sum the products for all elements 

a

I

B
S

 

Figure 30.9  The right-hand rule 
for determining the direction of 
the magnetic field surrounding a 
long, straight wire carrying a cur-
rent. Notice that the magnetic field 
lines form circles around the wire.

 

▸ 30.4 c o n t i n u e d
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over the closed circular path.1 Along this path, the vectors d sS and B
S

 are parallel at 
each point (see Fig. 30.10b), so B

S
? d sS 5 B ds. Furthermore, the magnitude of B

S
 is 

 constant on this circle and is given by Equation 30.5. Therefore, the sum of the prod-
ucts B ds over the closed path, which is equivalent to the line integral of B

S
? d sS, is

C B
S

? d sS 5 B C ds 5
m0I
2pr

12pr 2 5 m0I

where r ds 5 2pr is the circumference of the circular path of radius r. Although 
this result was calculated for the special case of a circular path surrounding a wire 
of infinite length, it holds for a closed path of any shape (an amperian loop) sur-
rounding a current that exists in an unbroken circuit. The general case, known as 
Ampère’s law, can be stated as follows:

The line integral of B
S

? d sS  around any closed path equals m0I, where I is the 
total steady current passing through any surface bounded by the closed path:

 C B
S

? d sS 5 m0I  (30.13)

 Ampère’s law describes the creation of magnetic fields by all continuous current 
configurations, but at our mathematical level it is useful only for calculating the 
magnetic field of current configurations having a high degree of symmetry. Its use 
is similar to that of Gauss’s law in calculating electric fields for highly symmetric 
charge distributions.

Q uick Quiz 30.3  Rank the 
magnitudes of r B

S
? d sS for 

the closed paths a through  
d in Figure 30.11 from great-
est to least.

ampère’s law 

Andre-Marie Ampère
French Physicist (1775–1836)
Ampère is credited with the discovery of 
electromagnetism, which is the relation-
ship between electric currents and mag-
netic fields. Ampère’s genius, particularly 
in mathematics, became evident by the 
time he was 12 years old; his personal 
life, however, was filled with tragedy. His 
father, a wealthy city official, was guillo-
tined during the French Revolution, and 
his wife died young, in 1803. Ampère 
died at the age of 61 of pneumonia.
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1You may wonder why we would choose to evaluate this scalar product. The origin of Ampère’s law is in 19th-century 
science, in which a “magnetic charge” (the supposed analog to an isolated electric charge) was imagined to be moved 
around a circular field line. The work done on the charge was related to B

S
? d sS, just as the work done moving an 

electric charge in an electric field is related to E
S

? d sS. Therefore, Ampère’s law, a valid and useful principle, arose 
from an erroneous and abandoned work calculation!

Pitfall Prevention 30.2
avoiding Problems with 
Signs When using Ampère’s law, 
apply the following right-hand 
rule. Point your thumb in the 
direction of the current through 
the amperian loop. Your curled 
fingers then point in the direction 
that you should integrate when tra-
versing the loop to avoid having to 
define the current as negative.

Figure 30.10 (a) and (b) Compasses show the effects of the current in a nearby wire. (c) Circular 
magnetic field lines surrounding a current-carrying conductor, displayed with iron filings.

a b

When no current is present in the 
wire, all compass needles point in 
the same direction (toward the 
Earth’s north pole).

When the wire carries a strong 
current, the compass needles 
deflect in a direction tangent to 
the circle, which is the direction 
of the magnetic field created by 
the current.

d sS
B
S

I � 0
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1 A 
5 A 

b

a

d

c

2 A 

Figure 30.11  (Quick 
Quiz 30.3) Four closed 
paths around three 
current-carrying wires.
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current as the charges in the wire move coil by coil along the length of the sole-
noid. Therefore, there is a nonzero magnetic field outside the solenoid. It is a 
weak field, with circular field lines, like those due to a line of current as in Fig-
ure 30.9. For an ideal solenoid, this weak field is the only field external to the 
solenoid. 
 We can use Ampère’s law to obtain a quantitative expression for the interior 
magnetic field in an ideal solenoid. Because the solenoid is ideal, B

S
 in the inte-

rior space is uniform and parallel to the axis and the magnetic field lines in the 
exterior space form circles around the solenoid. The planes of these circles are 
perpendicular to the page. Consider the rectangular path (loop 2) of length , 
and width w shown in Figure 30.18. Let’s apply Ampère’s law to this path by evalu-
ating the integral of B

S
? d sS  over each side of the rectangle. The contribution 

along side 3 is zero because the external magnetic field lines are perpendicular 
to the path in this region. The contributions from sides 2 and 4 are both zero, 
again because B

S
 is perpendicular to d sS along these paths, both inside and out-

side the solenoid. Side 1 gives a contribution to the integral because along this 
path B

S
 is uniform and parallel to d sS. The integral over the closed rectangular 

path is therefore

C B
S

? d sS 5 3
path 1

B
S

? d sS 5 B 3
path 1

ds 5 B,

 The right side of Ampère’s law involves the total current I through the area 
bounded by the path of integration. In this case, the total current through the 
rectangular path equals the current through each turn multiplied by the number 
of turns. If N is the number of turns in the length ,, the total current through the 
rectangle is NI. Therefore, Ampère’s law applied to this path gives

C B
S

? d sS 5 B, 5 m0NI

 B 5 m0 
N
,

 I 5 m0nI  (30.17)

where n 5 N/, is the number of turns per unit length.
 We also could obtain this result by reconsidering the magnetic field of a toroid 
(see Example 30.6). If the radius r of the torus in Figure 30.15 containing N turns is 
much greater than the toroid’s cross-sectional radius a, a short section of the toroid 
approximates a solenoid for which n 5 N/2pr. In this limit, Equation 30.16 agrees 
with Equation 30.17.
 Equation 30.17 is valid only for points near the center (that is, far from the ends) of 
a very long solenoid. As you might expect, the field near each end is smaller than the 
value given by Equation 30.17. As the length of a solenoid increases, the magnitude of 
the field at the end approaches half the magnitude at the center (see Problem 69).

Q uick Quiz 30.5  Consider a solenoid that is very long compared with its radius. 
Of the following choices, what is the most effective way to increase the magnetic 
field in the interior of the solenoid? (a) double its length, keeping the number 
of turns per unit length constant (b) reduce its radius by half, keeping the num-
ber of turns per unit length constant (c) overwrap the entire solenoid with an 
additional layer of current-carrying wire

30.5 Gauss’s Law in Magnetism
The flux associated with a magnetic field is defined in a manner similar to that 
used to define electric flux (see Eq. 24.3). Consider an element of area dA on an 

Magnetic field inside  
a solenoid

Ampère’s law applied to the 
circular path whose plane is 
perpendicular to the page can be 
used to show that there is a weak 
field outside the solenoid.

Ampère’s law applied to the 
rectangular dashed path can be 
used to calculate the 
magnitude of the interior field.

3

2

4

1 �

w

Loop 1

Loop 2

B
S

Figure 30.18  Cross-sectional view 
of an ideal solenoid, where the inte-
rior magnetic field is uniform and 
the exterior field is close to zero.
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This statement represents that isolated magnetic poles (monopoles) have never 
been detected and perhaps do not exist. Nonetheless, scientists continue the search 
because certain theories that are otherwise successful in explaining fundamental 
physical behavior suggest the possible existence of magnetic monopoles.

30.6 Magnetism in Matter
The magnetic field produced by a current in a coil of wire gives us a hint as to 
what causes certain materials to exhibit strong magnetic properties. Earlier we 
found that a solenoid like the one shown in Figure 30.17a has a north pole and a 
south pole. In general, any current loop has a magnetic field and therefore has a 
magnetic dipole moment, including the atomic-level current loops described in 
some models of the atom.

The Magnetic Moments of Atoms
Let’s begin our discussion with a classical model of the atom in which electrons 
move in circular orbits around the much more massive nucleus. In this model, an 
orbiting electron constitutes a tiny current loop (because it is a moving charge), 
and the magnetic moment of the electron is associated with this orbital motion. 
Although this model has many deficiencies, some of its predictions are in good 
agreement with the correct theory, which is expressed in terms of quantum 
physics.
 In our classical model, we assume an electron is a particle in uniform circular 
motion: it moves with constant speed v in a circular orbit of radius r about the 
nucleus as in Figure 30.24. The current I associated with this orbiting electron is its 
charge e divided by its period T. Using Equation 4.15 from the particle in uniform 
circular motion model, T 5 2pr/v, gives

I 5
e
T

5
ev

2pr
The magnitude of the magnetic moment associated with this current loop is given 
by m 5 IA, where A 5 pr 2 is the area enclosed by the orbit. Therefore,

 m 5 IA 5 a ev
2pr

bpr 2 5 1
2evr  (30.21)

Because the magnitude of the orbital angular momentum of the electron is given 
by L 5 mevr (Eq. 11.12 with f 5 908), the magnetic moment can be written as

 m 5 a e
2me

bL  (30.22)

This result demonstrates that the magnetic moment of the electron is proportional 
to its orbital angular momentum. Because the electron is negatively charged, the 
 vectors mS and L

S
 point in opposite directions. Both vectors are perpendicular to the 

plane of the orbit as indicated in Figure 30.24.
 A fundamental outcome of quantum physics is that orbital angular momentum 
is quantized and is equal to multiples of " 5 h/2p 5 1.05 3 10234 J ? s, where h is 
Planck’s constant (see Chapter 40). The smallest nonzero value of the electron’s 
magnetic moment resulting from its orbital motion is

 m 5 "2 
e

2me
 U  (30.23)

We shall see in Chapter 42 how expressions such as Equation 30.23 arise.
 Because all substances contain electrons, you may wonder why most substances 
are not magnetic. The main reason is that, in most substances, the magnetic 

WW orbital magnetic moment

The electron has an angular 
momentum     in one direction 
and a magnetic moment     in 
the opposite direction.

r

I
m
S

m
S

L
S

L
S

e�

Figure 30.24  An electron mov-
ing in the direction of the gray 
arrow in a circular orbit of radius 
r. Because the electron carries 
a negative charge, the direction 
of the current due to its motion 
about the nucleus is opposite the 
direction of that motion.
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So far, our studies in electricity and magnetism have focused on the electric fields 
produced by stationary charges and the magnetic fields produced by moving charges. This 
chapter explores the effects produced by magnetic fields that vary in time.
 Experiments conducted by Michael Faraday in England in 1831 and independently by 
Joseph Henry in the United States that same year showed that an emf can be induced in a 
circuit by a changing magnetic field. The results of these experiments led to a very basic 
and important law of electromagnetism known as Faraday’s law of induction. An emf (and 
therefore a current as well) can be induced in various processes that involve a change in a 
magnetic flux.

31.1 Faraday’s Law of Induction
To see how an emf can be induced by a changing magnetic field, consider the exper-
imental results obtained when a loop of wire is connected to a sensitive ammeter as 
illustrated in Figure 31.1 (page 936). When a magnet is moved toward the loop, the 
reading on the ammeter changes from zero to a nonzero value, arbitrarily shown 
as negative in Figure 31.1a. When the magnet is brought to rest and held stationary 
relative to the loop (Fig. 31.1b), a reading of zero is observed. When the magnet is 
moved away from the loop, the reading on the ammeter changes to a positive value 
as shown in Figure 31.1c. Finally, when the magnet is held stationary and the loop 

31.1 Faraday’s Law of Induction

31.2 Motional emf

31.3 Lenz’s Law

31.4 Induced emf and Electric 
Fields

31.5 Generators and Motors

31.6 Eddy Currents

c h a p t e r 

31Faraday’s Law

An artist’s impression of the Skerries 
SeaGen Array, a tidal energy 
generator under development 
near the island of Anglesey, North 
Wales.  When it is brought online, it 
will offer 10.5 MW of power from 
generators turned by tidal streams.  
The image shows the underwater 
blades that are driven by the tidal 
currents. The second blade system 
has been raised from the water for 
servicing. We will study generators 
in this chapter. (Marine Current 

Turbines TM Ltd.)
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is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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When a magnet is moved 
toward a loop of wire 
connected to a sensitive 
ammeter, the ammeter 
shows that a current is 
induced in the loop.

N S

When the magnet is held 
stationary, there is no 
induced current in the 
loop, even when the 
magnet is inside the loop.
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When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .a

Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.
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34.2 Maxwell’s Equations and Hertz’s Discoveries
We now present four equations that are regarded as the basis of all electrical and 
magnetic phenomena. These equations, developed by Maxwell, are as fundamental 
to electromagnetic phenomena as Newton’s laws are to mechanical phenomena. In 
fact, the theory that Maxwell developed was more far-reaching than even he imag-
ined because it turned out to be in agreement with the special theory of relativity, 
as Einstein showed in 1905.
 Maxwell’s equations represent the laws of electricity and magnetism that we have 
already discussed, but they have additional important consequences. For simplicity, 
we present Maxwell’s equations as applied to free space, that is, in the absence of 
any dielectric or magnetic material. The four equations are

 C E
S

? d A
S

5
q
P0

 (34.4)

 C B
S

? d A
S

5 0 (34.5)

 C E
S

? d sS 5 2
dFB

dt
 (34.6)

 C B
S

? d sS 5 m0I 1 P0m0 
dFE

dt
 (34.7)

 Equation 34.4 is Gauss’s law: the total electric flux through any closed surface 
equals the net charge inside that surface divided by P0. This law relates an electric 
field to the charge distribution that creates it.
 Equation 34.5 is Gauss’s law in magnetism, and it states that the net magnetic 
flux through a closed surface is zero. That is, the number of magnetic field lines 
that enter a closed volume must equal the number that leave that volume, which 
implies that magnetic field lines cannot begin or end at any point. If they did, it 
would mean that isolated magnetic monopoles existed at those points. That iso-
lated magnetic monopoles have not been observed in nature can be taken as a 
confirmation of Equation 34.5.
 Equation 34.6 is Faraday’s law of induction, which describes the creation of an 
electric field by a changing magnetic flux. This law states that the emf, which is the 

WW Gauss’s law

WW Gauss’s law in magnetism

WW Faraday’s law

WW Ampère–Maxwell law

Evaluate the angular frequency of the source from 
Equation 15.12:

v 5 2pf 5 2p(3.00 3 103 Hz) 5 1.88 3 104 s21

Use Equation 33.20 to express the potential differ-
ence in volts across the capacitor as a function of 
time in seconds:

DvC 5 DVmax sin vt 5 30.0 sin (1.88 3 104 t)

Use Equation 34.3 to find the displacement cur-
rent in amperes as a function of time. Note that 
the charge on the capacitor is q 5 C DvC :

id 5
dq

dt
5

d
dt

1C DvC 2 5 C 
d
dt

1DVmax sin vt 2

5 vC DVmax cos vt

Substitute numerical values: id 5 11.88 3 104 s21 2 18.00 3 1026 C 2 130.0 V 2 cos 11.88 3 104 t 2
5 4.51 cos 11.88 3 104 t 2

 

▸ 34.1 c o n t i n u e d
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